
U N I X T O O L B O X

This document is a collection of Unix/Linux/BSD commands and tasks which are useful for IT work
or for advanced users. This is a practical guide with concise explanations, however the reader is
supposed to know what s/he is doing.

1. System . 2

2. Processes . 7

3. File System . 9

4. Network . 14

5. SSH SCP . 22

6. VPN with SSH . 26

7. RSYNC . 27

8. SUDO . 29

9. Encrypt Files . 29

10. Encrypt Partitions . 31

11. SSL Certificates . 33

12. CVS . 35

13. SVN . 38

14. Useful Commands . 39

15. Install Software . 44

16. Convert Media . 45

17. Printing . 47

18. Databases . 47

19. Disk Quota . 49

20. Shells . 50

21. Scripting . 52

22. Programming . 54

23. Online Help . 56

Unix Toolbox revision 14.3
The latest version of this document can be found at http://cb.vu/unixtoolbox.xhtml. Replace .xhtml
on the link with .pdf for the PDF version and with .book.pdf for the booklet version. On a duplex
printer the booklet will create a small book ready to bind. See also the about page.
Error reports and comments are most welcome - c@cb.vu Colin Barschel.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://cb.vu/unixtoolbox.xhtml
http://cb.vu/unixtoolbox.pdf
http://cb.vu/unixtoolbox.book.pdf
http://cb.vu/unixtoolbox
mailto:c\at\cb.vu

1 SYSTEM
Hardware (p2) | Statistics (p2) | Users (p3) | Limits (p3) | Runlevels (p4) | root password (p5) |
Compile kernel (p6) | Repair grub (p7)

Running kernel and system information
uname -a # Get the kernel version (and BSD version)
lsb_release -a # Full release info of any LSB distribution
cat /etc/SuSE-release # Get SuSE version
cat /etc/debian_version # Get Debian version

Use /etc/DISTR-release with DISTR= lsb (Ubuntu), redhat, gentoo, mandrake, sun (Solaris), and so
on. See also /etc/issue.

uptime # Show how long the system has been running + load
hostname # system's host name
hostname -i # Display the IP address of the host. (Linux only)
man hier # Description of the file system hierarchy
last reboot # Show system reboot history

1.1 Hardware Informations

Kernel detected hardware
dmesg # Detected hardware and boot messages
lsdev # information about installed hardware
dd if=/dev/mem bs=1k skip=768 count=256 2>/dev/null | strings -n 8 # Read BIOS

Linux
cat /proc/cpuinfo # CPU model
cat /proc/meminfo # Hardware memory
grep MemTotal /proc/meminfo # Display the physical memory
watch -n1 'cat /proc/interrupts' # Watch changeable interrupts continuously
free -m # Used and free memory (-m for MB)
cat /proc/devices # Configured devices
lspci -tv # Show PCI devices
lsusb -tv # Show USB devices
lshal # Show a list of all devices with their properties
dmidecode # Show DMI/SMBIOS: hw info from the BIOS

FreeBSD
sysctl hw.model # CPU model
sysctl hw # Gives a lot of hardware information
sysctl hw.ncpu # number of active CPUs installed
sysctl vm # Memory usage
sysctl hw.realmem # Hardware memory
sysctl -a | grep mem # Kernel memory settings and info
sysctl dev # Configured devices
pciconf -l -cv # Show PCI devices
usbdevs -v # Show USB devices
atacontrol list # Show ATA devices
camcontrol devlist -v # Show SCSI devices

1.2 Load, statistics and messages

The following commands are useful to find out what is going on on the system.
top # display and update the top cpu processes
mpstat 1 # display processors related statistics
vmstat 2 # display virtual memory statistics
iostat 2 # display I/O statistics (2 s intervals)
systat -vmstat 1 # BSD summary of system statistics (1 s intervals)
systat -tcp 1 # BSD tcp connections (try also -ip)
systat -netstat 1 # BSD active network connections
systat -ifstat 1 # BSD network traffic through active interfaces

— System —

2

systat -iostat 1 # BSD CPU and and disk throughput
tail -n 500 /var/log/messages # Last 500 kernel/syslog messages
tail /var/log/warn # System warnings messages see syslog.conf

1.3 Users
id # Show the active user id with login and group
last # Show last logins on the system
who # Show who is logged on the system
groupadd admin # Add group "admin" and user colin (Linux/Solaris)
useradd -c "Colin Barschel" -g admin -m colin
usermod -a -G <group> <user> # Add existing user to group (Debian)
groupmod -A <user> <group> # Add existing user to group (SuSE)
userdel colin # Delete user colin (Linux/Solaris)
adduser joe # FreeBSD add user joe (interactive)
rmuser joe # FreeBSD delete user joe (interactive)
pw groupadd admin # Use pw on FreeBSD
pw groupmod admin -m newmember # Add a new member to a group
pw useradd colin -c "Colin Barschel" -g admin -m -s /bin/tcsh
pw userdel colin; pw groupdel admin

Encrypted passwords are stored in /etc/shadow for Linux and Solaris and /etc/master.passwd on
FreeBSD. If the master.passwd is modified manually (say to delete a password), run # pwd_mkdb
-p master.passwd to rebuild the database.

To temporarily prevent logins system wide (for all users but root) use nologin. The message in
nologin will be displayed (might not work with ssh pre-shared keys).
echo "Sorry no login now" > /etc/nologin # (Linux)
echo "Sorry no login now" > /var/run/nologin # (FreeBSD)

1.4 Limits

Some application require higher limits on open files and sockets (like a proxy web server,
database). The default limits are usually too low.

Linux

Per shell/script
The shell limits are governed by ulimit. The status is checked with ulimit -a. For example to
change the open files limit from 1024 to 10240 do:
ulimit -n 10240 # This is only valid within the shell

The ulimit command can be used in a script to change the limits for the script only.

Per user/process
Login users and applications can be configured in /etc/security/limits.conf. For example:

cat /etc/security/limits.conf
* hard nproc 250 # Limit user processes
asterisk hard nofile 409600 # Limit application open files

System wide
Kernel limits are set with sysctl. Permanent limits are set in /etc/sysctl.conf.

sysctl -a # View all system limits
sysctl fs.file-max # View max open files limit
sysctl fs.file-max=102400 # Change max open files limit
echo "1024 50000" > /proc/sys/net/ipv4/ip_local_port_range # port range
cat /etc/sysctl.conf
fs.file-max=102400 # Permanent entry in sysctl.conf
cat /proc/sys/fs/file-nr # How many file descriptors are in use

— System —

3

FreeBSD

Per shell/script
Use the command limits in csh or tcsh or as in Linux, use ulimit in an sh or bash shell.

Per user/process
The default limits on login are set in /etc/login.conf. An unlimited value is still limited by the
system maximal value.

System wide
Kernel limits are also set with sysctl. Permanent limits are set in /etc/sysctl.conf or /boot/
loader.conf. The syntax is the same as Linux but the keys are different.

sysctl -a # View all system limits
sysctl kern.maxfiles=XXXX # maximum number of file descriptors
kern.ipc.nmbclusters=32768 # Permanent entry in /etc/sysctl.conf
kern.maxfiles=65536 # Typical values for Squid
kern.maxfilesperproc=32768
kern.ipc.somaxconn=8192 # TCP queue. Better for apache/sendmail
sysctl kern.openfiles # How many file descriptors are in use
sysctl kern.ipc.numopensockets # How many open sockets are in use
sysctl net.inet.ip.portrange.last=50000 # Default is 1024-5000
netstat -m # network memory buffers statistics

See The FreeBSD handbook Chapter 111 for details.

Solaris
The following values in /etc/system will increase the maximum file descriptors per proc:

set rlim_fd_max = 4096 # Hard limit on file descriptors for a single proc
set rlim_fd_cur = 1024 # Soft limit on file descriptors for a single proc

1.5 Runlevels

Linux
Once booted, the kernel starts init which then starts rc which starts all scripts belonging to a
runlevel. The scripts are stored in /etc/init.d and are linked into /etc/rc.d/rcN.d with N the runlevel
number.
The default runlevel is configured in /etc/inittab. It is usually 3 or 5:
grep default: /etc/inittab
id:3:initdefault:

The actual runlevel can be changed with init. For example to go from 3 to 5:

init 5 # Enters runlevel 5

0 Shutdown and halt
1 Single-User mode (also S)
2 Multi-user without network
3 Multi-user with network
5 Multi-user with X
6 Reboot

Use chkconfig to configure the programs that will be started at boot in a runlevel.

chkconfig --list # List all init scripts
chkconfig --list sshd # Report the status of sshd
chkconfig sshd --level 35 on # Configure sshd for levels 3 and 5
chkconfig sshd off # Disable sshd for all runlevels

Debian and Debian based distributions like Ubuntu or Knoppix use the command update-rc.d to
manage the runlevels scripts. Default is to start in 2,3,4 and 5 and shutdown in 0,1 and 6.
update-rc.d sshd defaults # Activate sshd with the default runlevels
update-rc.d sshd start 20 2 3 4 5 . stop 20 0 1 6 . # With explicit arguments

1.http://www.freebsd.org/handbook/configtuning-kernel-limits.html

— System —

4

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/configtuning-kernel-limits.html

update-rc.d -f sshd remove # Disable sshd for all runlevels
shutdown -h now (or # poweroff) # Shutdown and halt the system

FreeBSD
The BSD boot approach is different from the SysV, there are no runlevels. The final boot state
(single user, with or without X) is configured in /etc/ttys. All OS scripts are located in /etc/
rc.d/ and in /usr/local/etc/rc.d/ for third-party applications. The activation of the service is
configured in /etc/rc.conf and /etc/rc.conf.local. The default behavior is configured in /etc/
defaults/rc.conf. The scripts responds at least to start|stop|status.

/etc/rc.d/sshd status
sshd is running as pid 552.
shutdown now # Go into single-user mode
exit # Go back to multi-user mode
shutdown -p now # Shutdown and halt the system
shutdown -r now # Reboot

The process init can also be used to reach one of the following states level. For example # init
6 for reboot.

0 Halt and turn the power off (signal USR2)
1 Go to single-user mode (signal TERM)
6 Reboot the machine (signal INT)
c Block further logins (signal TSTP)
q Rescan the ttys(5) file (signal HUP)

Windows
Start and stop a service with either the service name or "service description" (shown in the
Services Control Panel) as follows:
net stop WSearch
net start WSearch # start search service
net stop "Windows Search"
net start "Windows Search" # same as above using descr.

1.6 Reset root password

Linux method 1
At the boot loader (lilo or grub), enter the following boot option:
init=/bin/sh

The kernel will mount the root partition and init will start the bourne shell instead of rc and then a
runlevel. Use the command passwd at the prompt to change the password and then reboot. Forget
the single user mode as you need the password for that.
If, after booting, the root partition is mounted read only, remount it rw:
mount -o remount,rw /
passwd # or delete the root password (/etc/shadow)
sync; mount -o remount,ro / # sync before to remount read only
reboot

FreeBSD method 1
On FreeBSD, boot in single user mode, remount / rw and use passwd. You can select the single
user mode on the boot menu (option 4) which is displayed for 10 seconds at startup. The single
user mode will give you a root shell on the / partition.
mount -u /; mount -a # will mount / rw
passwd
reboot

— System —

5

Unixes and FreeBSD and Linux method 2
Other Unixes might not let you go away with the simple init trick. The solution is to mount the root
partition from an other OS (like a rescue CD) and change the password on the disk.

• Boot a live CD or installation CD into a rescue mode which will give you a shell.
• Find the root partition with fdisk e.g. fdisk /dev/sda
• Mount it and use chroot:

mount -o rw /dev/ad4s3a /mnt
chroot /mnt # chroot into /mnt
passwd
reboot

1.7 Kernel modules

Linux
lsmod # List all modules loaded in the kernel
modprobe isdn # To load a module (here isdn)

FreeBSD
kldstat # List all modules loaded in the kernel
kldload crypto # To load a module (here crypto)

1.8 Compile Kernel

Linux
cd /usr/src/linux
make mrproper # Clean everything, including config files
make oldconfig # Reuse the old .config if existent
make menuconfig # or xconfig (Qt) or gconfig (GTK)
make # Create a compressed kernel image
make modules # Compile the modules
make modules_install # Install the modules
make install # Install the kernel
reboot

FreeBSD
Optionally update the source tree (in /usr/src) with csup (as of FreeBSD 6.2 or later):

csup <supfile>

I use the following supfile:
*default host=cvsup5.FreeBSD.org # www.freebsd.org/handbook/cvsup.html#CVSUP-MIRRORS
*default prefix=/usr
*default base=/var/db
*default release=cvs delete tag=RELENG_7
src-all

To modify and rebuild the kernel, copy the generic configuration file to a new name and edit it as
needed (you can also edit the file GENERIC directly). To restart the build after an interruption, add
the option NO_CLEAN=YES to the make command to avoid cleaning the objects already build.

cd /usr/src/sys/i386/conf/
cp GENERIC MYKERNEL
cd /usr/src
make buildkernel KERNCONF=MYKERNEL
make installkernel KERNCONF=MYKERNEL

To rebuild the full OS:
make buildworld # Build the full OS but not the kernel
make buildkernel # Use KERNCONF as above if appropriate
make installkernel
reboot
mergemaster -p # Compares only files known to be essential

— System —

6

make installworld
mergemaster -i -U # Update all configurations and other files
reboot

For small changes in the source you can use NO_CLEAN=yes to avoid rebuilding the whole tree.
make buildworld NO_CLEAN=yes # Don't delete the old objects
make buildkernel KERNCONF=MYKERNEL NO_CLEAN=yes

1.9 Repair grub

So you broke grub? Boot from a live cd, [find your linux partition under /dev and use fdisk to find
the linux partion] mount the linux partition, add /proc and /dev and use grub-install /dev/xyz.
Suppose linux lies on /dev/sda6:

mount /dev/sda6 /mnt # mount the linux partition on /mnt
mount --bind /proc /mnt/proc # mount the proc subsystem into /mnt
mount --bind /dev /mnt/dev # mount the devices into /mnt
chroot /mnt # change root to the linux partition
grub-install /dev/sda # reinstall grub with your old settings

2 PROCESSES
Listing (p7) | Priority (p7) | Background/Foreground (p8) | Top (p8) | Kill (p8)

2.1 Listing and PIDs

Each process has a unique number, the PID. A list of all running process is retrieved with ps.

ps -auxefw # Extensive list of all running process

However more typical usage is with a pipe or with pgrep (for OS X install proctools from MacPorts
(page 45)):
ps axww | grep cron
586 ?? Is 0:01.48 /usr/sbin/cron -s

ps axjf # All processes in a tree format (Linux)
ps aux | grep 'ss[h]' # Find all ssh pids without the grep pid
pgrep -l sshd # Find the PIDs of processes by (part of) name
echo $$ # The PID of your shell
fuser -va 22/tcp # List processes using port 22 (Linux)
pmap PID # Memory map of process (hunt memory leaks) (Linux)
fuser -va /home # List processes accessing the /home partition
strace df # Trace system calls and signals
truss df # same as above on FreeBSD/Solaris/Unixware

2.2 Priority

Change the priority of a running process with renice. Negative numbers have a higher priority,
the lowest is -20 and "nice" have a positive value.
renice -5 586 # Stronger priority
586: old priority 0, new priority -5

Start the process with a defined priority with nice. Positive is "nice" or weak, negative is strong
scheduling priority. Make sure you know if /usr/bin/nice or the shell built-in is used (check with
which nice).

nice -n -5 top # Stronger priority (/usr/bin/nice)
nice -n 5 top # Weaker priority (/usr/bin/nice)
nice +5 top # tcsh builtin nice (same as above!)

While nice changes the CPU scheduler, an other useful command ionice will schedule the disk IO.
This is very useful for intensive IO application (e.g. compiling). You can select a class (idle - best
effort - real time), the man page is short and well explained.

— Processes —

7

ionice c3 -p123 # set idle class for pid 123 (Linux only)
ionice -c2 -n0 firefox # Run firefox with best effort and high priority
ionice -c3 -p$$ # Set the actual shell to idle priority

The last command is very useful to compile (or debug) a large project. Every command launched
from this shell will have a lover priority. $$ is your shell pid (try echo $$).
FreeBSD uses idprio/rtprio (0 = max priority, 31 = most idle):

idprio 31 make # compile in the lowest priority
idprio 31 -1234 # set PID 1234 with lowest priority
idprio -t -1234 # -t removes any real time/idle priority

2.3 Background/Foreground

When started from a shell, processes can be brought in the background and back to the foreground
with [Ctrl]-[Z] (^Z), bg and fg. List the processes with jobs.

ping cb.vu > ping.log
^Z # ping is suspended (stopped) with [Ctrl]-[Z]
bg # put in background and continues running
jobs -l # List processes in background
[1] - 36232 Running ping cb.vu > ping.log
[2] + 36233 Suspended (tty output) top
fg %2 # Bring process 2 back in foreground

Use nohup to start a process which has to keep running when the shell is closed (immune to
hangups).
nohup ping -i 60 > ping.log &

2.4 Top

The program top displays running information of processes. See also the program htop from
htop.sourceforge.net (a more powerful version of top) which runs on Linux and FreeBSD (ports/
sysutils/htop/). While top is running press the key h for a help overview. Useful keys are:

• u [user name] To display only the processes belonging to the user. Use + or blank to see
all users

• k [pid] Kill the process with pid.
• 1 To display all processors statistics (Linux only)
• R Toggle normal/reverse sort.

2.5 Signals/Kill

Terminate or send a signal with kill or killall.

ping -i 60 cb.vu > ping.log &
[1] 4712
kill -s TERM 4712 # same as kill -15 4712
killall -1 httpd # Kill HUP processes by exact name
pkill -9 http # Kill TERM processes by (part of) name
pkill -TERM -u www # Kill TERM processes owned by www
fuser -k -TERM -m /home # Kill every process accessing /home (to umount)

Important signals are:
1 HUP (hang up)
2 INT (interrupt)
3 QUIT (quit)
9 KILL (non-catchable, non-ignorable kill)
15 TERM (software termination signal)

— Processes —

8

3 FILE SYSTEM
Disk info (p9) | Boot (p9) | Disk usage (p9) | Opened files (p9) | Mount/remount (p10) | Mount
SMB (p11) | Mount image (p12) | Burn ISO (p12) | Create image (p13) | Memory disk (p14) | Disk
performance (p14)

3.1 Permissions

Change permission and ownership with chmod and chown. The default umask can be changed for all
users in /etc/profile for Linux or /etc/login.conf for FreeBSD. The default umask is usually 022. The
umask is subtracted from 777, thus umask 022 results in a permission 0f 755.
1 --x execute # Mode 764 = exec/read/write | read/write | read
2 -w- write # For: |-- Owner --| |- Group-| |Oth|
4 r-- read
ugo=a u=user, g=group, o=others, a=everyone

chmod [OPTION] MODE[,MODE] FILE # MODE is of the form [ugoa]*([-+=]([rwxXst]))
chmod 640 /var/log/maillog # Restrict the log -rw-r-----
chmod u=rw,g=r,o= /var/log/maillog # Same as above
chmod -R o-r /home/* # Recursive remove other readable for all users
chmod u+s /path/to/prog # Set SUID bit on executable (know what you do!)
find / -perm -u+s -print # Find all programs with the SUID bit
chown user:group /path/to/file # Change the user and group ownership of a file
chgrp group /path/to/file # Change the group ownership of a file
chmod 640 `find ./ -type f -print` # Change permissions to 640 for all files
chmod 751 `find ./ -type d -print` # Change permissions to 751 for all directories

3.2 Disk information
diskinfo -v /dev/ad2 # information about disk (sector/size) FreeBSD
hdparm -I /dev/sda # information about the IDE/ATA disk (Linux)
fdisk /dev/ad2 # Display and manipulate the partition table
smartctl -a /dev/ad2 # Display the disk SMART info

3.3 Boot

FreeBSD
To boot an old kernel if the new kernel doesn't boot, stop the boot at during the count down.
unload
load kernel.old
boot

3.4 System mount points/Disk usage
mount | column -t # Show mounted file-systems on the system
df # display free disk space and mounted devices
cat /proc/partitions # Show all registered partitions (Linux)

Disk usage
du -sh * # Directory sizes as listing
du -csh # Total directory size of the current directory
du -ks * | sort -n -r # Sort everything by size in kilobytes
ls -lSr # Show files, biggest last

3.5 Who has which files opened

This is useful to find out which file is blocking a partition which has to be unmounted and gives a
typical error of:

— File System —

9

umount /home/
umount: unmount of /home # umount impossible because a file is locking home

failed: Device busy

FreeBSD and most Unixes
fstat -f /home # for a mount point
fstat -p PID # for an application with PID
fstat -u user # for a user name

Find opened log file (or other opened files), say for Xorg:
ps ax | grep Xorg | awk '{print $1}'
1252
fstat -p 1252
USER CMD PID FD MOUNT INUM MODE SZ|DV R/W
root Xorg 1252 root / 2 drwxr-xr-x 512 r
root Xorg 1252 text /usr 216016 -rws--x--x 1679848 r
root Xorg 1252 0 /var 212042 -rw-r--r-- 56987 w

The file with inum 212042 is the only file in /var:
find -x /var -inum 212042
/var/log/Xorg.0.log

Linux
Find opened files on a mount point with fuser or lsof:

fuser -m /home # List processes accessing /home
lsof /home
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
tcsh 29029 eedcoba cwd DIR 0,18 12288 1048587 /home/eedcoba (guam:/home)
lsof 29140 eedcoba cwd DIR 0,18 12288 1048587 /home/eedcoba (guam:/home)

About an application:
ps ax | grep Xorg | awk '{print $1}'
3324
lsof -p 3324
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
Xorg 3324 root 0w REG 8,6 56296 12492 /var/log/Xorg.0.log

About a single file:
lsof /var/log/Xorg.0.log
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
Xorg 3324 root 0w REG 8,6 56296 12492 /var/log/Xorg.0.log

3.6 Mount/remount a file system

For example the cdrom. If listed in /etc/fstab:
mount /cdrom

Or find the device in /dev/ or with dmesg

FreeBSD
mount -v -t cd9660 /dev/cd0c /mnt # cdrom
mount_cd9660 /dev/wcd0c /cdrom # other method
mount -v -t msdos /dev/fd0c /mnt # floppy

Entry in /etc/fstab:
Device Mountpoint FStype Options Dump Pass#
/dev/acd0 /cdrom cd9660 ro,noauto 0 0

To let users do it:
sysctl vfs.usermount=1 # Or insert the line "vfs.usermount=1" in /etc/sysctl.conf

— File System —

10

Linux
mount -t auto /dev/cdrom /mnt/cdrom # typical cdrom mount command
mount /dev/hdc -t iso9660 -r /cdrom # typical IDE
mount /dev/scd0 -t iso9660 -r /cdrom # typical SCSI cdrom
mount /dev/sdc0 -t ntfs-3g /windows # typical SCSI

Entry in /etc/fstab:
/dev/cdrom /media/cdrom subfs noauto,fs=cdfss,ro,procuid,nosuid,nodev,exec 0 0

Mount a FreeBSD partition with Linux
Find the partition number containing with fdisk, this is usually the root partition, but it could be an
other BSD slice too. If the FreeBSD has many slices, they are the one not listed in the fdisk table,
but visible in /dev/sda* or /dev/hda*.
fdisk /dev/sda # Find the FreeBSD partition
/dev/sda3 * 5357 7905 20474842+ a5 FreeBSD
mount -t ufs -o ufstype=ufs2,ro /dev/sda3 /mnt
/dev/sda10 = /tmp; /dev/sda11 /usr # The other slices

Remount
Remount a device without unmounting it. Necessary for fsck for example
mount -o remount,ro / # Linux
mount -o ro / # FreeBSD

Copy the raw data from a cdrom into an iso image:
dd if=/dev/cd0c of=file.iso

3.7 Add swap on-the-fly

Suppose you need more swap (right now), say a 2GB file /swap2gb (Linux only).
dd if=/dev/zero of=/swap2gb bs=1024k count=2000
mkswap /swap2gb # create the swap area
swapon /swap2gb # activate the swap. It now in use
swapoff /swap2gb # when done deactivate the swap
rm /swap2gb

3.8 Mount an SMB share

Suppose we want to access the SMB share myshare on the computer smbserver, the address as
typed on a Windows PC is \\smbserver\myshare\. We mount on /mnt/smbshare. Warning> cifs
wants an IP or DNS name, not a Windows name.

Linux
smbclient -U user -I 192.168.16.229 -L //smbshare/ # List the shares
mount -t smbfs -o username=winuser //smbserver/myshare /mnt/smbshare
mount -t cifs -o username=winuser,password=winpwd //192.168.16.229/myshare /mnt/share

Additionally with the package mount.cifs it is possible to store the credentials in a file, for example
/home/user/.smb:

username=winuser
password=winpwd

And mount as follow:
mount -t cifs -o credentials=/home/user/.smb //192.168.16.229/myshare /mnt/smbshare

FreeBSD
Use -I to give the IP (or DNS name); smbserver is the Windows name.
smbutil view -I 192.168.16.229 //winuser@smbserver # List the shares
mount_smbfs -I 192.168.16.229 //winuser@smbserver/myshare /mnt/smbshare

— File System —

11

3.9 Mount an image
hdiutil mount image.iso # OS X

Linux loop-back
mount -t iso9660 -o loop file.iso /mnt # Mount a CD image
mount -t ext3 -o loop file.img /mnt # Mount an image with ext3 fs

FreeBSD
With memory device (do # kldload md.ko if necessary):
mdconfig -a -t vnode -f file.iso -u 0
mount -t cd9660 /dev/md0 /mnt
umount /mnt; mdconfig -d -u 0 # Cleanup the md device

Or with virtual node:
vnconfig /dev/vn0c file.iso; mount -t cd9660 /dev/vn0c /mnt
umount /mnt; vnconfig -u /dev/vn0c # Cleanup the vn device

Solaris and FreeBSD
with loop-back file interface or lofi:
lofiadm -a file.iso
mount -F hsfs -o ro /dev/lofi/1 /mnt
umount /mnt; lofiadm -d /dev/lofi/1 # Cleanup the lofi device

3.10 Create and burn an ISO image

This will copy the cd or DVD sector for sector. Without conv=notrunc, the image will be smaller if
there is less content on the cd. See below and the dd examples (page 41).
dd if=/dev/hdc of=/tmp/mycd.iso bs=2048 conv=notrunc

Use mkisofs to create a CD/DVD image from files in a directory. To overcome the file names
restrictions: -r enables the Rock Ridge extensions common to UNIX systems, -J enables Joliet
extensions used by Microsoft systems. -L allows ISO9660 filenames to begin with a period.
mkisofs -J -L -r -V TITLE -o imagefile.iso /path/to/dir
hdiutil makehybrid -iso -joliet -o dir.iso dir/ # OS X

On FreeBSD, mkisofs is found in the ports in sysutils/cdrtools.

Burn a CD/DVD ISO image

FreeBSD
FreeBSD does not enable DMA on ATAPI drives by default. DMA is enabled with the sysctl command
and the arguments below, or with /boot/loader.conf with the following entries:
hw.ata.ata_dma="1"
hw.ata.atapi_dma="1"

Use burncd with an ATAPI device (burncd is part of the base system) and cdrecord (in sysutils/
cdrtools) with a SCSI drive.
burncd -f /dev/acd0 data imagefile.iso fixate # For ATAPI drive
cdrecord -scanbus # To find the burner device (like 1,0,0)
cdrecord dev=1,0,0 imagefile.iso

Linux
Also use cdrecord with Linux as described above. Additionally it is possible to use the native ATAPI
interface which is found with:
cdrecord dev=ATAPI -scanbus

And burn the CD/DVD as above.

— File System —

12

dvd+rw-tools
The dvd+rw-tools package (FreeBSD: ports/sysutils/dvd+rw-tools) can do it all and includes
growisofs to burn CDs or DVDs. The examples refer to the dvd device as /dev/dvd which could
be a symlink to /dev/scd0 (typical scsi on Linux) or /dev/cd0 (typical FreeBSD) or /dev/rcd0c
(typical NetBSD/OpenBSD character SCSI) or /dev/rdsk/c0t1d0s2 (Solaris example of a character
SCSI/ATAPI CD-ROM device). There is a nice documentation with examples on the FreeBSD
handbook chapter 18.72.

-dvd-compat closes the disk
growisofs -dvd-compat -Z /dev/dvd=imagefile.iso # Burn existing iso image
growisofs -dvd-compat -Z /dev/dvd -J -R /p/to/data # Burn directly

Convert a Nero .nrg file to .iso
Nero simply adds a 300Kb header to a normal iso image. This can be trimmed with dd.
dd bs=1k if=imagefile.nrg of=imagefile.iso skip=300

Convert a bin/cue image to .iso
The little bchunk program3 can do this. It is in the FreeBSD ports in sysutils/bchunk.

bchunk imagefile.bin imagefile.cue imagefile.iso

3.11 Create a file based image

For example a partition of 1GB using the file /usr/vdisk.img. Here we use the vnode 0, but it could
also be 1.

FreeBSD
dd if=/dev/random of=/usr/vdisk.img bs=1K count=1M
mdconfig -a -t vnode -f /usr/vdisk.img -u 0 # Creates device /dev/md1
bsdlabel -w /dev/md0
newfs /dev/md0c
mount /dev/md0c /mnt
umount /mnt; mdconfig -d -u 0; rm /usr/vdisk.img # Cleanup the md device

The file based image can be automatically mounted during boot with an entry in /etc/rc.conf and
/etc/fstab. Test your setup with # /etc/rc.d/mdconfig start (first delete the md0 device with #
mdconfig -d -u 0).
Note however that this automatic setup will only work if the file image is NOT on the root partition.
The reason is that the /etc/rc.d/mdconfig script is executed very early during boot and the root
partition is still read-only. Images located outside the root partition will be mounted later with the
script /etc/rc.d/mdconfig2.
/boot/loader.conf:
md_load="YES"

/etc/rc.conf:
mdconfig_md0="-t vnode -f /usr/vdisk.img" # /usr is not on the root partition

/etc/fstab: (The 0 0 at the end is important, it tell fsck to ignore this device, as is does not exist
yet)
/dev/md0 /usr/vdisk ufs rw 0 0

It is also possible to increase the size of the image afterward, say for example 300 MB larger.
umount /mnt; mdconfig -d -u 0
dd if=/dev/zero bs=1m count=300 >> /usr/vdisk.img
mdconfig -a -t vnode -f /usr/vdisk.img -u 0
growfs /dev/md0
mount /dev/md0c /mnt # File partition is now 300 MB larger

2.http://www.freebsd.org/handbook/creating-dvds.html
3.http://freshmeat.net/projects/bchunk/

— File System —

13

http://fy.chalmers.se/~appro/linux/DVD+RW/
http://www.freebsd.org/handbook/creating-dvds.html
http://www.freebsd.org/handbook/creating-dvds.html
http://freshmeat.net/projects/bchunk/
http://freshmeat.net/projects/bchunk/

Linux
dd if=/dev/zero of=/usr/vdisk.img bs=1024k count=1024
mkfs.ext3 /usr/vdisk.img
mount -o loop /usr/vdisk.img /mnt
umount /mnt; rm /usr/vdisk.img # Cleanup

Linux with losetup
/dev/zero is much faster than urandom, but less secure for encryption.

dd if=/dev/urandom of=/usr/vdisk.img bs=1024k count=1024
losetup /dev/loop0 /usr/vdisk.img # Creates and associates /dev/loop0
mkfs.ext3 /dev/loop0
mount /dev/loop0 /mnt
losetup -a # Check used loops
umount /mnt
losetup -d /dev/loop0 # Detach
rm /usr/vdisk.img

3.12 Create a memory file system

A memory based file system is very fast for heavy IO application. How to create a 64 MB partition
mounted on /memdisk:

FreeBSD
mount_mfs -o rw -s 64M md /memdisk
umount /memdisk; mdconfig -d -u 0 # Cleanup the md device
md /memdisk mfs rw,-s64M 0 0 # /etc/fstab entry

Linux
mount -t tmpfs -osize=64m tmpfs /memdisk

3.13 Disk performance

Read and write a 1 GB file on partition ad4s3c (/home)
time dd if=/dev/ad4s3c of=/dev/null bs=1024k count=1000
time dd if=/dev/zero bs=1024k count=1000 of=/home/1Gb.file
hdparm -tT /dev/hda # Linux only

4 NETWORK
Routing (p15) | Additional IP (p15) | Change MAC (p16) | Ports (p16) | Firewall (p16) | IP Forward
(p17) | NAT (p17) | DNS (p17) | DHCP (p19) | Traffic (p19) | QoS (p20) | NIS (p21) | Netcat (p21)

4.1 Debugging (See also Traffic analysis) (page 19)

Linux
ethtool eth0 # Show the ethernet status (replaces mii-diag)
ethtool -s eth0 speed 100 duplex full # Force 100Mbit Full duplex
ethtool -s eth0 autoneg off # Disable auto negotiation
ethtool -p eth1 # Blink the ethernet led - very useful when supported
ip link show # Display all interfaces on Linux (similar to ifconfig)
ip link set eth0 up # Bring device up (or down). Same as "ifconfig eth0 up"
ip addr show # Display all IP addresses on Linux (similar to ifconfig)
ip neigh show # Similar to arp -a

Other OSes
ifconfig fxp0 # Check the "media" field on FreeBSD
arp -a # Check the router (or host) ARP entry (all OS)
ping cb.vu # The first thing to try...
traceroute cb.vu # Print the route path to destination

— Network —

14

ifconfig fxp0 media 100baseTX mediaopt full-duplex # 100Mbit full duplex (FreeBSD)
netstat -s # System-wide statistics for each network protocol

Additional commands which are not always installed per default but easy to find:
arping 192.168.16.254 # Ping on ethernet layer
tcptraceroute -f 5 cb.vu # uses tcp instead of icmp to trace through firewalls

4.2 Routing

Print routing table
route -n # Linux or use "ip route"
netstat -rn # Linux, BSD and UNIX
route print # Windows

Add and delete a route

FreeBSD
route add 212.117.0.0/16 192.168.1.1
route delete 212.117.0.0/16
route add default 192.168.1.1

Add the route permanently in /etc/rc.conf
static_routes="myroute"
route_myroute="-net 212.117.0.0/16 192.168.1.1"

Linux
route add -net 192.168.20.0 netmask 255.255.255.0 gw 192.168.16.254
ip route add 192.168.20.0/24 via 192.168.16.254 # same as above with ip route
route add -net 192.168.20.0 netmask 255.255.255.0 dev eth0
route add default gw 192.168.51.254
ip route add default via 192.168.51.254 dev eth0 # same as above with ip route
route delete -net 192.168.20.0 netmask 255.255.255.0

Solaris
route add -net 192.168.20.0 -netmask 255.255.255.0 192.168.16.254
route add default 192.168.51.254 1 # 1 = hops to the next gateway
route change default 192.168.50.254 1

Permanent entries are set in entry in /etc/defaultrouter.

Windows
Route add 192.168.50.0 mask 255.255.255.0 192.168.51.253
Route add 0.0.0.0 mask 0.0.0.0 192.168.51.254

Use add -p to make the route persistent.

4.3 Configure additional IP addresses

Linux
ifconfig eth0 192.168.50.254 netmask 255.255.255.0 # First IP
ifconfig eth0:0 192.168.51.254 netmask 255.255.255.0 # Second IP
ip addr add 192.168.50.254/24 dev eth0 # Equivalent ip commands
ip addr add 192.168.51.254/24 dev eth0 label eth0:1

FreeBSD
ifconfig fxp0 inet 192.168.50.254/24 # First IP
ifconfig fxp0 alias 192.168.51.254 netmask 255.255.255.0 # Second IP
ifconfig fxp0 -alias 192.168.51.254 # Remove second IP alias

Permanent entries in /etc/rc.conf
ifconfig_fxp0="inet 192.168.50.254 netmask 255.255.255.0"
ifconfig_fxp0_alias0="192.168.51.254 netmask 255.255.255.0"

— Network —

15

Solaris
Check the settings with ifconfig -a

ifconfig hme0 plumb # Enable the network card
ifconfig hme0 192.168.50.254 netmask 255.255.255.0 up # First IP
ifconfig hme0:1 192.168.51.254 netmask 255.255.255.0 up # Second IP

4.4 Change MAC address

Normally you have to bring the interface down before the change. Don't tell me why you want to
change the MAC address...
ifconfig eth0 down
ifconfig eth0 hw ether 00:01:02:03:04:05 # Linux
ifconfig fxp0 link 00:01:02:03:04:05 # FreeBSD
ifconfig hme0 ether 00:01:02:03:04:05 # Solaris
sudo ifconfig en0 ether 00:01:02:03:04:05 # OS X Tiger, Snow Leopard LAN*
sudo ifconfig en0 lladdr 00:01:02:03:04:05 # OS X Leopard

*Typical wireless interface is en1 and needs do disassociate from any network first (osxdaily
howto).
echo "alias airport='/System/Library/PrivateFrameworks/Apple80211.framework/Versions/Current/Resources/airport'"\
>> ~/.bash_profile # or symlink to /usr/sbin
airport -z # Disassociate from wireless networks
airport -I # Get info from wireless network

Many tools exist for Windows. For example etherchange4. Or look for "Mac Makeup", "smac".

4.5 Ports in use

Listening open ports:
netstat -an | grep LISTEN
lsof -i # Linux list all Internet connections
socklist # Linux display list of open sockets
sockstat -4 # FreeBSD application listing
netstat -anp --udp --tcp | grep LISTEN # Linux
netstat -tup # List active connections to/from system (Linux)
netstat -tupl # List listening ports from system (Linux)
netstat -ano # Windows

4.6 Firewall

Check if a firewall is running (typical configuration only):

Linux
iptables -L -n -v # For status
Open the iptables firewall
iptables -P INPUT ACCEPT # Open everything
iptables -P FORWARD ACCEPT
iptables -P OUTPUT ACCEPT
iptables -Z # Zero the packet and byte counters in all chains
iptables -F # Flush all chains
iptables -X # Delete all chains

FreeBSD
ipfw show # For status
ipfw list 65535 # if answer is "65535 deny ip from any to any" the fw is disabled
sysctl net.inet.ip.fw.enable=0 # Disable
sysctl net.inet.ip.fw.enable=1 # Enable

4.http://ntsecurity.nu/toolbox/etherchange

— Network —

16

http://osxdaily.com/2008/01/17/how-to-spoof-your-mac-address-in-mac-os-x/
http://osxdaily.com/2008/01/17/how-to-spoof-your-mac-address-in-mac-os-x/
http://ntsecurity.nu/toolbox/etherchange/

4.7 IP Forward for routing

Linux
Check and then enable IP forward with:
cat /proc/sys/net/ipv4/ip_forward # Check IP forward 0=off, 1=on
echo 1 > /proc/sys/net/ipv4/ip_forward

or edit /etc/sysctl.conf with:
net.ipv4.ip_forward = 1

FreeBSD
Check and enable with:
sysctl net.inet.ip.forwarding # Check IP forward 0=off, 1=on
sysctl net.inet.ip.forwarding=1
sysctl net.inet.ip.fastforwarding=1 # For dedicated router or firewall
Permanent with entry in /etc/rc.conf:
gateway_enable="YES" # Set to YES if this host will be a gateway.

Solaris
ndd -set /dev/ip ip_forwarding 1 # Set IP forward 0=off, 1=on

4.8 NAT Network Address Translation

Linux
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE # to activate NAT
iptables -t nat -A PREROUTING -p tcp -d 78.31.70.238 --dport 20022 -j DNAT \
--to 192.168.16.44:22 # Port forward 20022 to internal IP port ssh
iptables -t nat -A PREROUTING -p tcp -d 78.31.70.238 --dport 993:995 -j DNAT \
--to 192.168.16.254:993-995 # Port forward of range 993-995
ip route flush cache
iptables -L -t nat # Check NAT status

Delete the port forward with -D instead of -A. The program netstat-nat5 is very useful to track
connections (it uses /proc/net/ip_conntrack or /proc/net/nf_conntrack).

netstat-nat -n # show all connections with IPs

FreeBSD
natd -s -m -u -dynamic -f /etc/natd.conf -n fxp0
Or edit /etc/rc.conf with:
firewall_enable="YES" # Set to YES to enable firewall functionality
firewall_type="open" # Firewall type (see /etc/rc.firewall)
natd_enable="YES" # Enable natd (if firewall_enable == YES).
natd_interface="tun0" # Public interface or IP address to use.
natd_flags="-s -m -u -dynamic -f /etc/natd.conf"

Port forward with:
cat /etc/natd.conf
same_ports yes
use_sockets yes
unregistered_only
redirect_port tcp insideIP:2300-2399 3300-3399 # port range
redirect_port udp 192.168.51.103:7777 7777

4.9 DNS

On Unix the DNS entries are valid for all interfaces and are stored in /etc/resolv.conf. The domain
to which the host belongs is also stored in this file. A minimal configuration is:

5.http://tweegy.nl/projects/netstat-nat

— Network —

17

http://tweegy.nl/projects/netstat-nat/

nameserver 78.31.70.238
search sleepyowl.net intern.lab
domain sleepyowl.net

Check the system domain name with:
hostname -d # Same as dnsdomainname

Windows
On Windows the DNS are configured per interface. To display the configured DNS and to flush the
DNS cache use:
ipconfig /? # Display help
ipconfig /all # See all information including DNS

Flush DNS
Flush the OS DNS cache, some application using their own cache (e.g. Firefox) and will be
unaffected.
/etc/init.d/nscd restart # Restart nscd if used - Linux/BSD/Solaris
lookupd -flushcache # OS X Tiger
dscacheutil -flushcache # OS X Leopard and newer
ipconfig /flushdns # Windows

Forward queries
Dig is you friend to test the DNS settings. For example the public DNS server 213.133.105.2
ns.second-ns.de can be used for testing. See from which server the client receives the answer
(simplified answer).
dig sleepyowl.net
sleepyowl.net. 600 IN A 78.31.70.238
;; SERVER: 192.168.51.254#53(192.168.51.254)

The router 192.168.51.254 answered and the response is the A entry. Any entry can be queried
and the DNS server can be selected with @:
dig MX google.com
dig @127.0.0.1 NS sun.com # To test the local server
dig @204.97.212.10 NS MX heise.de # Query an external server
dig AXFR @ns1.xname.org cb.vu # Get the full zone (zone transfer)

The program host is also powerful.
host -t MX cb.vu # Get the mail MX entry
host -t NS -T sun.com # Get the NS record over a TCP connection
host -a sleepyowl.net # Get everything

Reverse queries
Find the name belonging to an IP address (in-addr.arpa.). This can be done with dig, host and
nslookup:

dig -x 78.31.70.238
host 78.31.70.238
nslookup 78.31.70.238

/etc/hosts
Single hosts can be configured in the file /etc/hosts instead of running named locally to resolve the
hostname queries. The format is simple, for example:
78.31.70.238 sleepyowl.net sleepyowl

The priority between hosts and a dns query, that is the name resolution order, can be configured in
/etc/nsswitch.conf AND /etc/host.conf. The file also exists on Windows, it is usually in:

C:\WINDOWS\SYSTEM32\DRIVERS\ETC

— Network —

18

4.10 DHCP

Linux
Some distributions (SuSE) use dhcpcd as client. The default interface is eth0.
dhcpcd -n eth0 # Trigger a renew (does not always work)
dhcpcd -k eth0 # release and shutdown

The lease with the full information is stored in:
/var/lib/dhcpcd/dhcpcd-eth0.info

FreeBSD
FreeBSD (and Debian) uses dhclient. To configure an interface (for example bge0) run:
dhclient bge0

The lease with the full information is stored in:
/var/db/dhclient.leases.bge0

Use
/etc/dhclient.conf

to prepend options or force different options:
cat /etc/dhclient.conf
interface "rl0" {

prepend domain-name-servers 127.0.0.1;
default domain-name "sleepyowl.net";
supersede domain-name "sleepyowl.net";

}

Windows
The dhcp lease can be renewed with ipconfig:

ipconfig /renew # renew all adapters
ipconfig /renew LAN # renew the adapter named "LAN"
ipconfig /release WLAN # release the adapter named "WLAN"

Yes it is a good idea to rename you adapter with simple names!

4.11 Traffic analysis

Bmon6 is a small console bandwidth monitor and can display the flow on different interfaces.

Sniff with tcpdump
tcpdump -nl -i bge0 not port ssh and src \(192.168.16.121 or 192.168.16.54\)
tcpdump -n -i eth1 net 192.168.16.121 # select to/from a single IP
tcpdump -n -i eth1 net 192.168.16.0/24 # select traffic to/from a network
tcpdump -l > dump && tail -f dump # Buffered output
tcpdump -i rl0 -w traffic.rl0 # Write traffic headers in binary file
tcpdump -i rl0 -s 0 -w traffic.rl0 # Write traffic + payload in binary file
tcpdump -r traffic.rl0 # Read from file (also for ethereal
tcpdump port 80 # The two classic commands
tcpdump host google.com
tcpdump -i eth0 -X port \(110 or 143\) # Check if pop or imap is secure
tcpdump -n -i eth0 icmp # Only catch pings
tcpdump -i eth0 -s 0 -A port 80 | grep GET # -s 0 for full packet -A for ASCII

Additional important options:
-A Print each packets in clear text (without header)
-X Print packets in hex and ASCII
-l Make stdout line buffered
-D Print all interfaces available

On Windows use windump from www.winpcap.org. Use windump -D to list the interfaces.

6.http://people.suug.ch/~tgr/bmon/

— Network —

19

http://people.suug.ch/~tgr/bmon/
http://www.winpcap.org/

Scan with nmap
Nmap7 is a port scanner with OS detection, it is usually installed on most distributions and is also
available for Windows. If you don't scan your servers, hackers do it for you...
nmap cb.vu # scans all reserved TCP ports on the host
nmap -sP 192.168.16.0/24 # Find out which IP are used and by which host on 0/24
nmap -sS -sV -O cb.vu # Do a stealth SYN scan with version and OS detection
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 3.8.1p1 FreeBSD-20060930 (protocol 2.0)
25/tcp open smtp Sendmail smtpd 8.13.6/8.13.6
80/tcp open http Apache httpd 2.0.59 ((FreeBSD) DAV/2 PHP/4.
[...]
Running: FreeBSD 5.X
Uptime 33.120 days (since Fri Aug 31 11:41:04 2007)

Other non standard but useful tools are hping (www.hping.org) an IP packet assembler/analyzer
and fping (fping.sourceforge.net). fping can check multiple hosts in a round-robin fashion.

4.12 Traffic control (QoS)

Traffic control manages the queuing, policing, scheduling, and other traffic parameters for a
network. The following examples are simple practical uses of the Linux and FreeBSD capabilities to
better use the available bandwidth.

Limit upload
DSL or cable modems have a long queue to improve the upload throughput. However filling the
queue with a fast device (e.g. ethernet) will dramatically decrease the interactivity. It is therefore
useful to limit the device upload rate to match the physical capacity of the modem, this should
greatly improve the interactivity. Set to about 90% of the modem maximal (cable) speed.

Linux
For a 512 Kbit upload modem.
tc qdisc add dev eth0 root tbf rate 480kbit latency 50ms burst 1540
tc -s qdisc ls dev eth0 # Status
tc qdisc del dev eth0 root # Delete the queue
tc qdisc change dev eth0 root tbf rate 220kbit latency 50ms burst 1540

FreeBSD
FreeBSD uses the dummynet traffic shaper which is configured with ipfw. Pipes are used to set limits
the bandwidth in units of [K|M]{bit/s|Byte/s}, 0 means unlimited bandwidth. Using the same pipe
number will reconfigure it. For example limit the upload bandwidth to 500 Kbit.
kldload dummynet # load the module if necessary
ipfw pipe 1 config bw 500Kbit/s # create a pipe with limited bandwidth
ipfw add pipe 1 ip from me to any # divert the full upload into the pipe

Quality of service

Linux
Priority queuing with tc to optimize VoIP. See the full example on voip-info.org or
www.howtoforge.com. Suppose VoIP uses udp on ports 10000:11024 and device eth0 (could also
be ppp0 or so). The following commands define the QoS to three queues and force the VoIP traffic
to queue 1 with QoS 0x1e (all bits set). The default traffic flows into queue 3 and QoS Minimize-
Delay flows into queue 2.
tc qdisc add dev eth0 root handle 1: prio priomap 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 0
tc qdisc add dev eth0 parent 1:1 handle 10: sfq
tc qdisc add dev eth0 parent 1:2 handle 20: sfq
tc qdisc add dev eth0 parent 1:3 handle 30: sfq
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 \
match ip dport 10000 0x3C00 flowid 1:1 # use server port range
match ip dst 123.23.0.1 flowid 1:1 # or/and use server IP

7.http://insecure.org/nmap/

— Network —

20

http://insecure.org/nmap/
http://www.voip-info.org/wiki-QoS+Linux+with+HFS
http://www.howtoforge.com/voip_qos_traffic_shaping_iproute2_asterisk

Status and remove with
tc -s qdisc ls dev eth0 # queue status
tc qdisc del dev eth0 root # delete all QoS

Calculate port range and mask
The tc filter defines the port range with port and mask which you have to calculate. Find the 2^N
ending of the port range, deduce the range and convert to HEX. This is your mask. Example for
10000 -> 11024, the range is 1024.
2^13 (8192) < 10000 < 2^14 (16384) # ending is 2^14 = 16384
echo "obase=16;(2^14)-1024" | bc # mask is 0x3C00

FreeBSD
The max link bandwidth is 500Kbit/s and we define 3 queues with priority 100:10:1 for VoIP:ssh:all
the rest.
ipfw pipe 1 config bw 500Kbit/s
ipfw queue 1 config pipe 1 weight 100
ipfw queue 2 config pipe 1 weight 10
ipfw queue 3 config pipe 1 weight 1
ipfw add 10 queue 1 proto udp dst-port 10000-11024
ipfw add 11 queue 1 proto udp dst-ip 123.23.0.1 # or/and use server IP
ipfw add 20 queue 2 dsp-port ssh
ipfw add 30 queue 3 from me to any # all the rest

Status and remove with
ipfw list # rules status
ipfw pipe list # pipe status
ipfw flush # deletes all rules but default

4.13 NIS Debugging

Some commands which should work on a well configured NIS client:
ypwhich # get the connected NIS server name
domainname # The NIS domain name as configured
ypcat group # should display the group from the NIS server
cd /var/yp && make # Rebuild the yp database
rpcinfo -p servername # Report RPC services of the server

Is ypbind running?
ps auxww | grep ypbind
/usr/sbin/ypbind -s -m -S servername1,servername2 # FreeBSD
/usr/sbin/ypbind # Linux
yppoll passwd.byname
Map passwd.byname has order number 1190635041. Mon Sep 24 13:57:21 2007
The master server is servername.domain.net.

Linux
cat /etc/yp.conf
ypserver servername
domain domain.net broadcast

4.14 Netcat

Netcat8 (nc) is better known as the "network Swiss Army Knife", it can manipulate, create or
read/write TCP/IP connections. Here some useful examples, there are many more on the net, for
example g-loaded.eu[...]9 and here10.
You might need to use the command netcat instead of nc. Also see the similar command socat.

8.http://netcat.sourceforge.net
9.http://www.g-loaded.eu/2006/11/06/netcat-a-couple-of-useful-examples

10.http://www.terminally-incoherent.com/blog/2007/08/07/few-useful-netcat-tricks

— Network —

21

http://netcat.sourceforge.net/
http://www.g-loaded.eu/2006/11/06/netcat-a-couple-of-useful-examples
http://www.terminally-incoherent.com/blog/2007/08/07/few-useful-netcat-tricks
http://www.dest-unreach.org/socat

File transfer
Copy a large folder over a raw tcp connection. The transfer is very quick (no protocol overhead)
and you don't need to mess up with NFS or SMB or FTP or so, simply make the file available on the
server, and get it from the client. Here 192.168.1.1 is the server IP address.
server# tar -cf - -C VIDEO_TS . | nc -l -p 4444 # Serve tar folder on port 4444
client# nc 192.168.1.1 4444 | tar xpf - -C VIDEO_TS # Pull the file on port 4444
server# cat largefile | nc -l 5678 # Server a single file
client# nc 192.168.1.1 5678 > largefile # Pull the single file
server# dd if=/dev/da0 | nc -l 4444 # Server partition image
client# nc 192.168.1.1 4444 | dd of=/dev/da0 # Pull partition to clone
client# nc 192.168.1.1 4444 | dd of=da0.img # Pull partition to file

Other hacks
Specially here, you must know what you are doing.

Remote shell
Option -e only on the Windows version? Or use nc 1.10.
nc -lp 4444 -e /bin/bash # Provide a remote shell (server backdoor)
nc -lp 4444 -e cmd.exe # remote shell for Windows

Emergency web server
Serve a single file on port 80 in a loop.
while true; do nc -l -p 80 < unixtoolbox.xhtml; done

Chat
Alice and Bob can chat over a simple TCP socket. The text is transferred with the enter key.
alice# nc -lp 4444
bob # nc 192.168.1.1 4444

5 SSH SCP
Public key (p22) | Fingerprint (p23) | SCP (p23) | Tunneling (p24)

See other tricks 25 ssh cmd11

5.1 Public key authentication

Connect to a host without password using public key authentication. The idea is to append your
public key to the authorized_keys2 file on the remote host. For this example let's connect host-
client to host-server, the key is generated on the client. With cygwin you might have to create
your home directoy and the .ssh directory with # mkdir -p /home/USER/.ssh

• Use ssh-keygen to generate a key pair. ~/.ssh/id_dsa is the private key, ~/.ssh/
id_dsa.pub is the public key.

• Copy only the public key to the server and append it to the file ~/.ssh/authorized_keys2
on your home on the server.

ssh-keygen -t dsa -N ''
cat ~/.ssh/id_dsa.pub | ssh you@host-server "cat - >> ~/.ssh/authorized_keys2"

Using the Windows client from ssh.com
The non commercial version of the ssh.com client can be downloaded the main ftp site:
ftp.ssh.com/pub/ssh/. Keys generated by the ssh.com client need to be converted for the OpenSSH
server. This can be done with the ssh-keygen command.

• Create a key pair with the ssh.com client: Settings - User Authentication - Generate New....
• I use Key type DSA; key length 2048.
• Copy the public key generated by the ssh.com client to the server into the ~/.ssh folder.

11.http://blog.urfix.com/25-ssh-commands-tricks/

— SSH SCP —

22

http://download.insecure.org/stf/nc110.tgz
http://blog.urfix.com/25-ssh-commands-tricks/
http://ftp.ssh.com/pub/ssh/

• The keys are in C:\Documents and Settings\%USERNAME%\Application
Data\SSH\UserKeys.

• Use the ssh-keygen command on the server to convert the key:
cd ~/.ssh
ssh-keygen -i -f keyfilename.pub >> authorized_keys2

Notice: We used a DSA key, RSA is also possible. The key is not protected by a password.

Using putty for Windows
Putty12 is a simple and free ssh client for Windows.

• Create a key pair with the puTTYgen program.
• Save the public and private keys (for example into C:\Documents and

Settings\%USERNAME%\.ssh).
• Copy the public key to the server into the ~/.ssh folder:

scp .ssh/puttykey.pub root@192.168.51.254:.ssh/

• Use the ssh-keygen command on the server to convert the key for OpenSSH:
cd ~/.ssh
ssh-keygen -i -f puttykey.pub >> authorized_keys2

• Point the private key location in the putty settings: Connection - SSH - Auth

5.2 Check fingerprint

At the first login, ssh will ask if the unknown host with the fingerprint has to be stored in the known
hosts. To avoid a man-in-the-middle attack the administrator of the server can send you the server
fingerprint which is then compared on the first login. Use ssh-keygen -l to get the fingerprint (on
the server):
ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key.pub # For RSA key
2048 61:33:be:9b:ae:6c:36:31:fd:83:98:b7:99:2d:9f:cd /etc/ssh/ssh_host_rsa_key.pub
ssh-keygen -l -f /etc/ssh/ssh_host_dsa_key.pub # For DSA key (default)
2048 14:4a:aa:d9:73:25:46:6d:0a:48:35:c7:f4:16:d4:ee /etc/ssh/ssh_host_dsa_key.pub

Now the client connecting to this server can verify that he is connecting to the right server:
ssh linda
The authenticity of host 'linda (192.168.16.54)' can't be established.
DSA key fingerprint is 14:4a:aa:d9:73:25:46:6d:0a:48:35:c7:f4:16:d4:ee.
Are you sure you want to continue connecting (yes/no)? yes

5.3 Secure file transfer

Some simple commands:
scp file.txt host-two:/tmp
scp joe@host-two:/www/*.html /www/tmp
scp -r joe@host-two:/www /www/tmp

In Konqueror or Midnight Commander it is possible to access a remote file system with the address
fish://user@gate. However the implementation is very slow.
Furthermore it is possible to mount a remote folder with sshfs a file system client based on SCP.
See fuse sshfs13.
ssh_exchange_identification: Connection closed by remote host

With this error try the following on the server:
echo 'SSHD: ALL' >> /etc/hosts.allow
/etc/init.d/sshd restart

12.http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
13.http://fuse.sourceforge.net/sshfs.html

— SSH SCP —

23

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://fuse.sourceforge.net/sshfs.html

5.4 Tunneling

SSH tunneling allows to forward or reverse forward a port over the SSH connection, thus securing
the traffic and accessing ports which would otherwise be blocked. This only works with TCP. The
general nomenclature for forward and reverse is (see also ssh and NAT example):
ssh -L localport:desthost:destport user@gate # desthost as seen from the gate
ssh -R destport:desthost:localport user@gate # forwards your localport to destination

desthost:localport as seen from the client initiating the tunnel
ssh -X user@gate # To force X forwarding

This will connect to gate and forward the local port to the host desthost:destport. Note desthost
is the destination host as seen by the gate, so if the connection is to the gate, then desthost is
localhost. More than one port forward is possible.

Direct forward on the gate
Let say we want to access the CVS (port 2401) and http (port 80) which are running on the gate.
This is the simplest example, desthost is thus localhost, and we use the port 8080 locally instead of
80 so we don't need to be root. Once the ssh session is open, both services are accessible on the
local ports.
ssh -L 2401:localhost:2401 -L 8080:localhost:80 user@gate

Netbios and remote desktop forward to a second server
Let say a Windows smb server is behind the gate and is not running ssh. We need access to the
smb share and also remote desktop to the server.
ssh -L 139:smbserver:139 -L 3388:smbserver:3389 user@gate

The smb share can now be accessed with \\127.0.0.1\, but only if the local share is disabled,
because the local share is listening on port 139.
It is possible to keep the local share enabled, for this we need to create a new virtual device with a
new IP address for the tunnel, the smb share will be connected over this address. Furthermore the
local RDP is already listening on 3389, so we choose 3388. For this example let's use a virtual IP of
10.1.1.1.

• With putty use Source port=10.1.1.1:139. It is possible to create multiple loop devices and
tunnel. On Windows 2000, only putty worked for me. On Windows Vista also forward the
port 445 in addition to the port 139. Also on Vista the patch KB942624 prevents the port
445 to be forwarded, so I had to uninstall this path in Vista.

• With the ssh.com client, disable "Allow local connections only". Since ssh.com will bind to
all addresses, only a single share can be connected.

Now create the loopback interface with IP 10.1.1.1:
• # System->Control Panel->Add Hardware # Yes, Hardware is already connected # Add a

new hardware device (at bottom).
• # Install the hardware that I manually select # Network adapters # Microsoft , Microsoft

Loopback Adapter.
• Configure the IP address of the fake device to 10.1.1.1 mask 255.255.255.0, no gateway.
• advanced->WINS, Enable LMHosts Lookup; Disable NetBIOS over TCP/IP.
• # Enable Client for Microsoft Networks. # Disable File and Printer Sharing for Microsoft

Networks.
I HAD to reboot for this to work. Now connect to the smb share with \\10.1.1.1 and remote desktop
to 10.1.1.1:3388.

Debug
If it is not working:

• Are the ports forwarded: netstat -an? Look at 0.0.0.0:139 or 10.1.1.1:139
• Does telnet 10.1.1.1 139 connect?
• You need the checkbox "Local ports accept connections from other hosts".
• Is "File and Printer Sharing for Microsoft Networks" disabled on the loopback interface?

— SSH SCP —

24

Connect two clients behind NAT
Suppose two clients are behind a NAT gateway and client cliadmin has to connect to client cliuser
(the destination), both can login to the gate with ssh and are running Linux with sshd. You don't
need root access anywhere as long as the ports on gate are above 1024. We use 2022 on gate.
Also since the gate is used locally, the option GatewayPorts is not necessary.
On client cliuser (from destination to gate):
ssh -R 2022:localhost:22 user@gate # forwards client 22 to gate:2022

On client cliadmin (from host to gate):
ssh -L 3022:localhost:2022 admin@gate # forwards client 3022 to gate:2022

Now the admin can connect directly to the client cliuser with:
ssh -p 3022 admin@localhost # local:3022 -> gate:2022 -> client:22

Connect to VNC behind NAT
Suppose a Windows client with VNC listening on port 5900 has to be accessed from behind NAT. On
client cliwin to gate:
ssh -R 15900:localhost:5900 user@gate

On client cliadmin (from host to gate):
ssh -L 5900:localhost:15900 admin@gate

Now the admin can connect directly to the client VNC with:
vncconnect -display :0 localhost

Dig a multi-hop ssh tunnel
Suppose you can not reach a server directly with ssh, but only via multiple intermediate hosts (for
example because of routing issues). Sometimes it is still necessary to get a direct client - server
connection, for example to copy files with scp, or forward other ports like smb or vnc. One way to
do this is to chain tunnels together to forward a port to the server along the hops. This "carrier"
port only reaches its final destination on the last connection to the server.
Suppose we want to forward the ssh port from a client to a server over two hops. Once the tunnel
is build, it is possible to connect to the server directly from the client (and also add an other port
forward).

Create tunnel in one shell
client -> host1 -> host2 -> server and dig tunnel 5678
client># ssh -L5678:localhost:5678 host1 # 5678 is an arbitrary port for the tunnel
host_1># ssh -L5678:localhost:5678 host2 # chain 5678 from host1 to host2
host_2># ssh -L5678:localhost:22 server # end the tunnel on port 22 on the server

Use tunnel with an other shell
client -> server using tunnel 5678
ssh -p 5678 localhost # connect directly from client to server
scp -P 5678 myfile localhost:/tmp/ # or copy a file directly using the tunnel
rsync -e 'ssh -p 5678' myfile localhost:/tmp/ # or rsync a file directly to the server

Autoconnect and keep alive script
I use variations of the following script to keep a machine reacheable over a reverse ssh tunnel. The
connection is automatically rebuilt if closed. You can add multiple -L or -R tunnels on one line.

#!/bin/sh
COMMAND="ssh -N -f -g -R 3022:localhost:22 colin@cb.vu"
pgrep -f -x "$COMMAND" > /dev/null 2>&1 || $COMMAND
exit 0

1 * * * * colin /home/colin/port_forward.sh # crontab entry (here hourly)

— SSH SCP —

25

6 VPN WITH SSH

As of version 4.3, OpenSSH can use the tun/tap device to encrypt a tunnel. This is very similar to
other TLS based VPN solutions like OpenVPN. One advantage with SSH is that there is no need to
install and configure additional software. Additionally the tunnel uses the SSH authentication like
pre shared keys. The drawback is that the encapsulation is done over TCP which might result in
poor performance on a slow link. Also the tunnel is relying on a single (fragile) TCP connection. This
technique is very useful for a quick IP based VPN setup. There is no limitation as with the single
TCP port forward, all layer 3/4 protocols like ICMP, TCP/UDP, etc. are forwarded over the VPN. In
any case, the following options are needed in the sshd_conf file:
PermitRootLogin yes
PermitTunnel yes

6.1 Single P2P connection

Here we are connecting two hosts, hclient and hserver with a peer to peer tunnel. The connection is
started from hclient to hserver and is done as root. The tunnel end points are 10.0.1.1 (server) and
10.0.1.2 (client) and we create a device tun5 (this could also be an other number). The procedure
is very simple:

• Connect with SSH using the tunnel option -w
• Configure the IP addresses of the tunnel. Once on the server and once on the client.

Connect to the server
Connection started on the client and commands are executed on the server.

Server is on Linux
cli># ssh -w5:5 root@hserver
srv># ifconfig tun5 10.0.1.1 netmask 255.255.255.252 # Executed on the server shell

Server is on FreeBSD
cli># ssh -w5:5 root@hserver
srv># ifconfig tun5 10.0.1.1 10.0.1.2 # Executed on the server shell

Configure the client
Commands executed on the client:
cli># ifconfig tun5 10.0.1.2 netmask 255.255.255.252 # Client is on Linux
cli># ifconfig tun5 10.0.1.2 10.0.1.1 # Client is on FreeBSD

The two hosts are now connected and can transparently communicate with any layer 3/4 protocol
using the tunnel IP addresses.

6.2 Connect two networks

In addition to the p2p setup above, it is more useful to connect two private networks with an SSH
VPN using two gates. Suppose for the example, netA is 192.168.51.0/24 and netB 192.168.16.0/
24. The procedure is similar as above, we only need to add the routing. NAT must be activated on
the private interface only if the gates are not the same as the default gateway of their network.
192.168.51.0/24 (netA)|gateA <-> gateB|192.168.16.0/24 (netB)

• Connect with SSH using the tunnel option -w.
• Configure the IP addresses of the tunnel. Once on the server and once on the client.
• Add the routing for the two networks.
• If necessary, activate NAT on the private interface of the gate.

The setup is started from gateA in netA.

Connect from gateA to gateB
Connection is started from gateA and commands are executed on gateB.

— VPN with SSH —

26

gateB is on Linux
gateA># ssh -w5:5 root@gateB
gateB># ifconfig tun5 10.0.1.1 netmask 255.255.255.252 # Executed on the gateB shell
gateB># route add -net 192.168.51.0 netmask 255.255.255.0 dev tun5
gateB># echo 1 > /proc/sys/net/ipv4/ip_forward # Only needed if not default gw
gateB># iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

gateB is on FreeBSD
gateA># ssh -w5:5 root@gateB # Creates the tun5 devices
gateB># ifconfig tun5 10.0.1.1 10.0.1.2 # Executed on the gateB shell
gateB># route add 192.168.51.0/24 10.0.1.2
gateB># sysctl net.inet.ip.forwarding=1 # Only needed if not default gw
gateB># natd -s -m -u -dynamic -n fxp0 # see NAT (page 17)
gateA># sysctl net.inet.ip.fw.enable=1

Configure gateA
Commands executed on gateA:

gateA is on Linux
gateA># ifconfig tun5 10.0.1.2 netmask 255.255.255.252
gateA># route add -net 192.168.16.0 netmask 255.255.255.0 dev tun5
gateA># echo 1 > /proc/sys/net/ipv4/ip_forward
gateA># iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

gateA is on FreeBSD
gateA># ifconfig tun5 10.0.1.2 10.0.1.1
gateA># route add 192.168.16.0/24 10.0.1.2
gateA># sysctl net.inet.ip.forwarding=1
gateA># natd -s -m -u -dynamic -n fxp0 # see NAT (page 17)
gateA># sysctl net.inet.ip.fw.enable=1

The two private networks are now transparently connected via the SSH VPN. The IP forward and
NAT settings are only necessary if the gates are not the default gateways. In this case the clients
would not know where to forward the response, and nat must be activated.

7 RSYNC

Rsync can almost completely replace cp and scp, furthermore interrupted transfers are efficiently
restarted. A trailing slash (and the absence thereof) has different meanings, the man page is
good... Here some examples:
Copy the directories with full content:
rsync -a /home/colin/ /backup/colin/ # "archive" mode. e.g keep the same
rsync -a /var/ /var_bak/
rsync -aR --delete-during /home/user/ /backup/ # use relative (see below)

Same as before but over the network and with compression. Rsync uses SSH for the transport per
default and will use the ssh key if they are set. Use ":" as with SCP. A typical remote copy:
rsync -axSRzv /home/user/ user@server:/backup/user/ # Copy to remote
rsync -a 'user@server:My\ Documents' My\ Documents # Quote AND escape spaces for the remote shell

Exclude any directory tmp within /home/user/ and keep the relative folders hierarchy, that is the
remote directory will have the structure /backup/home/user/. This is typically used for backups.
rsync -azR --exclude=tmp/ /home/user/ user@server:/backup/

Use port 20022 for the ssh connection:
rsync -az -e 'ssh -p 20022' /home/colin/ user@server:/backup/colin/

Using the rsync daemon (used with "::") is much faster, but not encrypted over ssh. The location
of /backup is defined by the configuration in /etc/rsyncd.conf. The variable RSYNC_PASSWORD can
be set to avoid the need to enter the password manually.

— RSYNC —

27

rsync -axSRz /home/ ruser@hostname::rmodule/backup/
rsync -axSRz ruser@hostname::rmodule/backup/ /home/ # To copy back

Some important options:
-a, --archive archive mode; same as -rlptgoD (no -H)
-r, --recursive recurse into directories
-R, --relative use relative path names
-H, --hard-links preserve hard links
-S, --sparse handle sparse files efficiently
-x, --one-file-system don't cross file system boundaries
--exclude=PATTERN exclude files matching PATTERN
--delete-during receiver deletes during xfer, not before
--delete-after receiver deletes after transfer, not before

7.1 Rsync on Windows

Rsync is available for Windows through cygwin or as stand-alone packaged in cwrsync14. This is very
convenient for automated backups. Install one of them (not both) and add the path to the Windows
system variables: # Control Panel -> System -> tab Advanced, button Environment Variables.
Edit the "Path" system variable and add the full path to the installed rsync, e.g. C:\Program
Files\cwRsync\bin or C:\cygwin\bin. This way the commands rsync and ssh are available in a
Windows command shell.

Public key authentication
Rsync is automatically tunneled over SSH and thus uses the SSH authentication on the server.
Automatic backups have to avoid a user interaction, for this the SSH public key authentication can
be used and the rsync command will run without a password.
All the following commands are executed within a Windows console. In a console (Start -> Run ->
cmd) create and upload the key as described in SSH, change "user" and "server" as appropriate.
If the file authorized_keys2 does not exist yet, simply copy id_dsa.pub to authorized_keys2 and
upload it.
ssh-keygen -t dsa -N '' # Creates a public and a private key
rsync user@server:.ssh/authorized_keys2 . # Copy the file locally from the server
cat id_dsa.pub >> authorized_keys2 # Or use an editor to add the key
rsync authorized_keys2 user@server:.ssh/ # Copy the file back to the server
del authorized_keys2 # Remove the local copy

Now test it with (in one line):
rsync -rv "/cygdrive/c/Documents and Settings/%USERNAME%/My Documents/" \
'user@server:My\ Documents/'

Automatic backup
Use a batch file to automate the backup and add the file in the scheduled tasks (Programs ->
Accessories -> System Tools -> Scheduled Tasks). For example create the file backup.bat and
replace user@server.
@ECHO OFF
REM rsync the directory My Documents
SETLOCAL
SET CWRSYNCHOME=C:\PROGRAM FILES\CWRSYNC
SET CYGWIN=nontsec
SET CWOLDPATH=%PATH%
REM uncomment the next line when using cygwin
SET PATH=%CWRSYNCHOME%\BIN;%PATH%
echo Press Control-C to abort
rsync -av "/cygdrive/c/Documents and Settings/%USERNAME%/My Documents/" \
'user@server:My\ Documents/'
pause

14.http://sourceforge.net/projects/sereds

— RSYNC —

28

http://sourceforge.net/projects/sereds/

8 SUDO

Sudo is a standard way to give users some administrative rights without giving out the root
password. Sudo is very useful in a multi user environment with a mix of server and workstations.
Simply call the command with sudo:
sudo /etc/init.d/dhcpd restart # Run the rc script as root
sudo -u sysadmin whoami # Run cmd as an other user

8.1 Configuration

Sudo is configured in /etc/sudoers and must only be edited with visudo. The basic syntax is (the
lists are comma separated):
user hosts = (runas) commands # In /etc/sudoers

users one or more users or %group (like %wheel) to gain the rights
hosts list of hosts (or ALL)
runas list of users (or ALL) that the command rule can be run as. It is enclosed in ()!
commands list of commands (or ALL) that will be run as root or as (runas)

Additionally those keywords can be defined as alias, they are called User_Alias, Host_Alias,
Runas_Alias and Cmnd_Alias. This is useful for larger setups. Here a sudoers example:
cat /etc/sudoers
Host aliases are subnets or hostnames.
Host_Alias DMZ = 212.118.81.40/28
Host_Alias DESKTOP = work1, work2

User aliases are a list of users which can have the same rights
User_Alias ADMINS = colin, luca, admin
User_Alias DEVEL = joe, jack, julia
Runas_Alias DBA = oracle,pgsql

Command aliases define the full path of a list of commands
Cmnd_Alias SYSTEM = /sbin/reboot,/usr/bin/kill,/sbin/halt,/sbin/shutdown,/etc/init.d/
Cmnd_Alias PW = /usr/bin/passwd [A-z]*, !/usr/bin/passwd root # Not root pwd!
Cmnd_Alias DEBUG = /usr/sbin/tcpdump,/usr/bin/wireshark,/usr/bin/nmap

The actual rules
root,ADMINS ALL = (ALL) NOPASSWD: ALL # ADMINS can do anything w/o a password.
DEVEL DESKTOP = (ALL) NOPASSWD: ALL # Developers have full right on desktops
DEVEL DMZ = (ALL) NOPASSWD: DEBUG # Developers can debug the DMZ servers.

User sysadmin can mess around in the DMZ servers with some commands.
sysadmin DMZ = (ALL) NOPASSWD: SYSTEM,PW,DEBUG
sysadmin ALL,!DMZ = (ALL) NOPASSWD: ALL # Can do anything outside the DMZ.
%dba ALL = (DBA) ALL # Group dba can run as database user.

anyone can mount/unmount a cd-rom on the desktop machines
ALL DESKTOP = NOPASSWD: /sbin/mount /cdrom,/sbin/umount /cdrom

9 ENCRYPT FILES

9.1 OpenSSL

A single file
Encrypt and decrypt:
openssl aes-128-cbc -salt -in file -out file.aes
openssl aes-128-cbc -d -salt -in file.aes -out file

Note that the file can of course be a tar archive.

— SUDO —

29

tar and encrypt a whole directory
tar -cf - directory | openssl aes-128-cbc -salt -out directory.tar.aes # Encrypt
openssl aes-128-cbc -d -salt -in directory.tar.aes | tar -x -f - # Decrypt

tar zip and encrypt a whole directory
tar -zcf - directory | openssl aes-128-cbc -salt -out directory.tar.gz.aes # Encrypt
openssl aes-128-cbc -d -salt -in directory.tar.gz.aes | tar -xz -f - # Decrypt

• Use -k mysecretpassword after aes-128-cbc to avoid the interactive password request.
However note that this is highly insecure.

• Use aes-256-cbc instead of aes-128-cbc to get even stronger encryption. This uses also
more CPU.

9.2 GPG

GnuPG is well known to encrypt and sign emails or any data. Furthermore gpg and also provides
an advanced key management system. This section only covers files encryption, not email usage,
signing or the Web-Of-Trust.
The simplest encryption is with a symmetric cipher. In this case the file is encrypted with a
password and anyone who knows the password can decrypt it, thus the keys are not needed. Gpg
adds an extention ".gpg" to the encrypted file names.
gpg -c file # Encrypt file with password
gpg file.gpg # Decrypt file (optionally -o otherfile)

Using keys
For more details see GPG Quick Start15 and GPG/PGP Basics16 and the gnupg documentation17 among
others.
The private and public keys are the heart of asymmetric cryptography. What is important to
remember:

• Your public key is used by others to encrypt files that only you as the receiver can decrypt
(not even the one who encrypted the file can decrypt it). The public key is thus meant to be
distributed.

• Your private key is encrypted with your passphrase and is used to decrypt files which were
encrypted with your public key. The private key must be kept secure. Also if the key or
passphrase is lost, so are all the files encrypted with your public key.

• The key files are called keyrings as they can contain more than one key.
First generate a key pair. The defaults are fine, however you will have to enter at least your full
name and email and optionally a comment. The comment is useful to create more than one key
with the same name and email. Also you should use a "passphrase", not a simple password.
gpg --gen-key # This can take a long time

The keys are stored in ~/.gnupg/ on Unix, on Windows they are typically stored in
C:/Documents and Settings/%USERNAME%/Application Data/gnupg/.
~/.gnupg/pubring.gpg # Contains your public keys and all others imported
~/.gnupg/secring.gpg # Can contain more than one private key

Short reminder on most used options:
-e encrypt data
-d decrypt data
-r NAME encrypt for recipient NAME (or 'Full Name' or 'email@domain')
-a create ascii armored output of a key
-o use as output file

The examples use 'Your Name' and 'Alice' as the keys are referred to by the email or full name
or partial name. For example I can use 'Colin' or 'c@cb.vu' for my key [Colin Barschel (cb.vu)
<c@cb.vu>].

15.http://www.madboa.com/geek/gpg-quickstart
16.http://aplawrence.com/Basics/gpg.html
17.http://gnupg.org/documentation

— Encrypt Files —

30

http://gnupg.org/
http://www.madboa.com/geek/gpg-quickstart
http://aplawrence.com/Basics/gpg.html
http://gnupg.org/documentation

Encrypt for personal use only
No need to export/import any key for this. You have both already.
gpg -e -r 'Your Name' file # Encrypt with your public key
gpg -o file -d file.gpg # Decrypt. Use -o or it goes to stdout

Encrypt - Decrypt with keys
First you need to export your public key for someone else to use it. And you need to import the
public say from Alice to encrypt a file for her. You can either handle the keys in simple ascii files or
use a public key server.
For example Alice export her public key and you import it, you can then encrypt a file for her. That
is only Alice will be able to decrypt it.
gpg -a -o alicekey.asc --export 'Alice' # Alice exported her key in ascii file.
gpg --send-keys --keyserver subkeys.pgp.net KEYID # Alice put her key on a server.
gpg --import alicekey.asc # You import her key into your pubring.
gpg --search-keys --keyserver subkeys.pgp.net 'Alice' # or get her key from a server.

Once the keys are imported it is very easy to encrypt or decrypt a file:
gpg -e -r 'Alice' file # Encrypt the file for Alice.
gpg -d file.gpg -o file # Decrypt a file encrypted by Alice for you.

Key administration
gpg --list-keys # list public keys and see the KEYIDS

The KEYID follows the '/' e.g. for: pub 1024D/D12B77CE the KEYID is D12B77CE
gpg --gen-revoke 'Your Name' # generate revocation certificate
gpg --list-secret-keys # list private keys
gpg --delete-keys NAME # delete a public key from local key ring
gpg --delete-secret-key NAME # delete a secret key from local key ring
gpg --fingerprint KEYID # Show the fingerprint of the key
gpg --edit-key KEYID # Edit key (e.g sign or add/del email)

10 ENCRYPT PARTITIONS
Linux with LUKS (p31) | Linux dm-crypt only (p32) | FreeBSD GELI (p32) | FBSD pwd only (p33) |
OS X image (p33)

There are (many) other alternative methods to encrypt disks, I only show here the methods I know
and use. Keep in mind that the security is only good as long the OS has not been tempered with.
An intruder could easily record the password from the keyboard events. Furthermore the data is
freely accessible when the partition is attached and will not prevent an intruder to have access to it
in this state.

10.1 Linux

Those instructions use the Linux dm-crypt (device-mapper) facility available on the 2.6 kernel.
In this example, lets encrypt the partition /dev/sdc1, it could be however any other partition or
disk, or USB or a file based partition created with losetup. In this case we would use /dev/loop0.
See file image partition. The device mapper uses labels to identify a partition. We use sdc1 in this
example, but it could be any string.

dm-crypt with LUKS
LUKS with dm-crypt has better encryption and makes it possible to have multiple passphrase for
the same partition or to change the password easily. To test if LUKS is available, simply type #
cryptsetup --help, if nothing about LUKS shows up, use the instructions below Without LUKS.
First create a partition if necessary: fdisk /dev/sdc.

Create encrypted partition
dd if=/dev/urandom of=/dev/sdc1 # Optional. For paranoids only (takes days)
cryptsetup -y luksFormat /dev/sdc1 # This destroys any data on sdc1

— Encrypt Partitions —

31

cryptsetup luksOpen /dev/sdc1 sdc1
mkfs.ext3 /dev/mapper/sdc1 # create ext3 file system
mount -t ext3 /dev/mapper/sdc1 /mnt
umount /mnt
cryptsetup luksClose sdc1 # Detach the encrypted partition

Attach
cryptsetup luksOpen /dev/sdc1 sdc1
mount -t ext3 /dev/mapper/sdc1 /mnt

Detach
umount /mnt
cryptsetup luksClose sdc1

dm-crypt without LUKS
cryptsetup -y create sdc1 /dev/sdc1 # or any other partition like /dev/loop0
dmsetup ls # check it, will display: sdc1 (254, 0)
mkfs.ext3 /dev/mapper/sdc1 # This is done only the first time!
mount -t ext3 /dev/mapper/sdc1 /mnt
umount /mnt/
cryptsetup remove sdc1 # Detach the encrypted partition

Do exactly the same (without the mkfs part!) to re-attach the partition. If the password is not
correct, the mount command will fail. In this case simply remove the map sdc1 (cryptsetup
remove sdc1) and create it again.

10.2 FreeBSD

The two popular FreeBSD disk encryption modules are gbde and geli. I now use geli because it
is faster and also uses the crypto device for hardware acceleration. See The FreeBSD handbook
Chapter 18.618 for all the details. The geli module must be loaded or compiled into the kernel:
options GEOM_ELI
device crypto # or as module:
echo 'geom_eli_load="YES"' >> /boot/loader.conf # or do: kldload geom_eli

Use password and key
I use those settings for a typical disk encryption, it uses a passphrase AND a key to encrypt the
master key. That is you need both the password and the generated key /root/ad1.key to attach
the partition. The master key is stored inside the partition and is not visible. See below for typical
USB or file based image.

Create encrypted partition
dd if=/dev/random of=/root/ad1.key bs=64 count=1 # this key encrypts the mater key
geli init -s 4096 -K /root/ad1.key /dev/ad1 # -s 8192 is also OK for disks
geli attach -k /root/ad1.key /dev/ad1 # DO make a backup of /root/ad1.key
dd if=/dev/random of=/dev/ad1.eli bs=1m # Optional and takes a long time
newfs /dev/ad1.eli # Create file system
mount /dev/ad1.eli /mnt

Attach
geli attach -k /root/ad1.key /dev/ad1
fsck -ny -t ffs /dev/ad1.eli # In doubt check the file system
mount /dev/ad1.eli /mnt

Detach
The detach procedure is done automatically on shutdown.
umount /mnt
geli detach /dev/ad1.eli

18.http://www.freebsd.org/handbook/disks-encrypting.html

— Encrypt Partitions —

32

http://www.freebsd.org/handbook/disks-encrypting.html
http://www.freebsd.org/handbook/disks-encrypting.html

/etc/fstab
The encrypted partition can be configured to be mounted with /etc/fstab. The password will be
prompted when booting. The following settings are required for this example:
grep geli /etc/rc.conf
geli_devices="ad1"
geli_ad1_flags="-k /root/ad1.key"
grep geli /etc/fstab
/dev/ad1.eli /home/private ufs rw 0 0

Use password only
It is more convenient to encrypt a USB stick or file based image with a passphrase only and no key.
In this case it is not necessary to carry the additional key file around. The procedure is very much
the same as above, simply without the key file. Let's encrypt a file based image /cryptedfile of 1
GB.
dd if=/dev/zero of=/cryptedfile bs=1M count=1000 # 1 GB file
mdconfig -at vnode -f /cryptedfile
geli init /dev/md0 # encrypts with password only
geli attach /dev/md0
newfs -U -m 0 /dev/md0.eli
mount /dev/md0.eli /mnt
umount /dev/md0.eli
geli detach md0.eli

It is now possible to mount this image on an other system with the password only.
mdconfig -at vnode -f /cryptedfile
geli attach /dev/md0
mount /dev/md0.eli /mnt

10.1 OS X Encrypted Disk Image

Don't know by command line only. See OS X Encrypted Disk Image19 and Apple support20

11 SSL CERTIFICATES

So called SSL/TLS certificates are cryptographic public key certificates and are composed of a public
and a private key. The certificates are used to authenticate the endpoints and encrypt the data.
They are used for example on a web server (https) or mail server (imaps).

11.1 Procedure

• We need a certificate authority to sign our certificate. This step is usually provided by a
vendor like Thawte, Verisign, etc., however we can also create our own.

• Create a certificate signing request. This request is like an unsigned certificate (the public
part) and already contains all necessary information. The certificate request is normally
sent to the authority vendor for signing. This step also creates the private key on the local
machine.

• Sign the certificate with the certificate authority.
• If necessary join the certificate and the key in a single file to be used by the application

(web server, mail server etc.).

11.2 Configure OpenSSL

We use /usr/local/certs as directory for this example check or edit /etc/ssl/openssl.cnf accordingly
to your settings so you know where the files will be created. Here are the relevant part of
openssl.cnf:
[CA_default]
dir = /usr/local/certs/CA # Where everything is kept

19.https://wiki.thayer.dartmouth.edu/display/computing/Creating+a+Mac+OS+X+Encrypted+Disk+Image
20.http://support.apple.com/kb/ht1578

— SSL Certificates —

33

https://wiki.thayer.dartmouth.edu/display/computing/Creating+a+Mac+OS+X+Encrypted+Disk+Image
http://support.apple.com/kb/ht1578

certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.

Make sure the directories exist or create them
mkdir -p /usr/local/certs/CA
cd /usr/local/certs/CA
mkdir certs crl newcerts private
echo "01" > serial # Only if serial does not exist
touch index.txt

If you intend to get a signed certificate from a vendor, you only need a certificate signing request
(CSR). This CSR will then be signed by the vendor for a limited time (e.g. 1 year).

11.3 Create a certificate authority

If you do not have a certificate authority from a vendor, you'll have to create your own. This step
is not necessary if one intend to use a vendor to sign the request. To make a certificate authority
(CA):
openssl req -new -x509 -days 730 -config /etc/ssl/openssl.cnf \
-keyout CA/private/cakey.pem -out CA/cacert.pem

11.4 Create a certificate signing request

To make a new certificate (for mail server or web server for example), first create a request
certificate with its private key. If your application do not support encrypted private key (for example
UW-IMAP does not), then disable encryption with -nodes.

openssl req -new -keyout newkey.pem -out newreq.pem \
-config /etc/ssl/openssl.cnf
openssl req -nodes -new -keyout newkey.pem -out newreq.pem \
-config /etc/ssl/openssl.cnf # No encryption for the key

Keep this created CSR (newreq.pem) as it can be signed again at the next renewal, the signature
onlt will limit the validity of the certificate. This process also created the private key newkey.pem.

11.5 Sign the certificate

The certificate request has to be signed by the CA to be valid, this step is usually done by the
vendor. Note: replace "servername" with the name of your server in the next commands.
cat newreq.pem newkey.pem > new.pem
openssl ca -policy policy_anything -out servernamecert.pem \
-config /etc/ssl/openssl.cnf -infiles new.pem
mv newkey.pem servernamekey.pem

Now servernamekey.pem is the private key and servernamecert.pem is the server certificate.

11.6 Create united certificate

The IMAP server wants to have both private key and server certificate in the same file. And in
general, this is also easier to handle, but the file has to be kept securely!. Apache also can deal
with it well. Create a file servername.pem containing both the certificate and key.

• Open the private key (servernamekey.pem) with a text editor and copy the private key into
the "servername.pem" file.

• Do the same with the server certificate (servernamecert.pem).
The final servername.pem file should look like this:

-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQDutWy+o/XZ/[...]qK5LqQgT3c9dU6fcR+WuSs6aejdEDDqBRQ
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
MIIERzCCA7CgAwIBAgIBBDANB[...]iG9w0BAQQFADCBxTELMAkGA1UEBhMCREUx
-----END CERTIFICATE-----

— SSL Certificates —

34

What we have now in the directory /usr/local/certs/:
CA/private/cakey.pem (CA server private key)
CA/cacert.pem (CA server public key)
certs/servernamekey.pem (server private key)
certs/servernamecert.pem (server signed certificate)
certs/servername.pem (server certificate with private key)

Keep the private key secure!

11.7 View certificate information

To view the certificate information simply do:
openssl x509 -text -in servernamecert.pem # View the certificate info
openssl req -noout -text -in server.csr # View the request info
openssl s_client -connect cb.vu:443 # Check a web server certificate

12 CVS
Server setup (p35) | CVS test (p36) | SSH tunneling (p37) | CVS usage (p37)

12.1 Server setup

Initiate the CVS
Decide where the main repository will rest and create a root cvs. For example /usr/local/cvs (as
root):
mkdir -p /usr/local/cvs
setenv CVSROOT /usr/local/cvs # Set CVSROOT to the new location (local)
cvs init # Creates all internal CVS config files
cd /root
cvs checkout CVSROOT # Checkout the config files to modify them
cd CVSROOT
edit config (fine as it is)
cvs commit config
cat >> writers # Create a writers file (optionally also readers)
colin
^D # Use [Control][D] to quit the edit
cvs add writers # Add the file writers into the repository
cvs edit checkoutlist
cat >> checkoutlist
writers
^D # Use [Control][D] to quit the edit
cvs commit # Commit all the configuration changes

Add a readers file if you want to differentiate read and write permissions Note: Do not (ever) edit
files directly into the main cvs, but rather checkout the file, modify it and check it in. We did this
with the file writers to define the write access.
There are three popular ways to access the CVS at this point. The first two don't need any further
configuration. See the examples on CVSROOT below for how to use them:

• Direct local access to the file system. The user(s) need sufficient file permission to access
the CS directly and there is no further authentication in addition to the OS login. However
this is only useful if the repository is local.

• Remote access with ssh with the ext protocol. Any use with an ssh shell account and read/
write permissions on the CVS server can access the CVS directly with ext over ssh without
any additional tunnel. There is no server process running on the CVS for this to work. The
ssh login does the authentication.

• Remote access with pserver (default port: 2401/tcp). This is the preferred use for larger
user base as the users are authenticated by the CVS pserver with a dedicated password
database, there is therefore no need for local users accounts. This setup is explained below.

— CVS —

35

Network setup with inetd
The CVS can be run locally only if a network access is not needed. For a remote access, the daemon
inetd can start the pserver with the following line in /etc/inetd.conf (/etc/xinetd.d/cvs on SuSE):
cvspserver stream tcp nowait cvs /usr/bin/cvs cvs \
--allow-root=/usr/local/cvs pserver

It is a good idea to block the cvs port from the Internet with the firewall and use an ssh tunnel to
access the repository remotely.

Separate authentication
It is possible to have cvs users which are not part of the OS (no local users). This is actually
probably wanted too from the security point of view. Simply add a file named passwd (in the
CVSROOT directory) containing the users login and password in the crypt format. This is can be
done with the apache htpasswd tool.
Note: This passwd file is the only file which has to be edited directly in the CVSROOT directory. Also
it won't be checked out. More info with htpasswd --help
htpasswd -cb passwd user1 password1 # -c creates the file
htpasswd -b passwd user2 password2

Now add :cvs at the end of each line to tell the cvs server to change the user to cvs (or whatever
your cvs server is running under). It looks like this:
cat passwd
user1:xsFjhU22u8Fuo:cvs
user2:vnefJOsnnvToM:cvs

12.2 Test it

Test the login as normal user (for example here me)
cvs -d :pserver:colin@192.168.50.254:/usr/local/cvs login
Logging in to :pserver:colin@192.168.50.254:2401/usr/local/cvs
CVS password:

CVSROOT variable
This is an environment variable used to specify the location of the repository we're doing operations
on. For local use, it can be just set to the directory of the repository. For use over the network, the
transport protocol must be specified. Set the CVSROOT variable with setenv CVSROOT string on
a csh, tcsh shell, or with export CVSROOT=string on a sh, bash shell.

setenv CVSROOT :pserver:<username>@<host>:/cvsdirectory
For example:
setenv CVSROOT /usr/local/cvs # Used locally only
setenv CVSROOT :local:/usr/local/cvs # Same as above
setenv CVSROOT :ext:user@cvsserver:/usr/local/cvs # Direct access with SSH
setenv CVS_RSH ssh # for the ext access
setenv CVSROOT :pserver:user@cvsserver.254:/usr/local/cvs # network with pserver

When the login succeeded one can import a new project into the repository: cd into your project
root directory
cvs import <module name> <vendor tag> <initial tag>
cvs -d :pserver:colin@192.168.50.254:/usr/local/cvs import MyProject MyCompany START

Where MyProject is the name of the new project in the repository (used later to checkout). Cvs will
import the current directory content into the new project.

To checkout:
cvs -d :pserver:colin@192.168.50.254:/usr/local/cvs checkout MyProject
or
setenv CVSROOT :pserver:colin@192.168.50.254:/usr/local/cvs
cvs checkout MyProject

— CVS —

36

12.3 SSH tunneling for CVS

We need 2 shells for this. On the first shell we connect to the cvs server with ssh and port-forward
the cvs connection. On the second shell we use the cvs normally as if it where running locally.
on shell 1:
ssh -L2401:localhost:2401 colin@cvs_server # Connect directly to the CVS server. Or:
ssh -L2401:cvs_server:2401 colin@gateway # Use a gateway to reach the CVS

on shell 2:
setenv CVSROOT :pserver:colin@localhost:/usr/local/cvs
cvs login
Logging in to :pserver:colin@localhost:2401/usr/local/cvs
CVS password:
cvs checkout MyProject/src

12.4 CVS commands and usage

Import
The import command is used to add a whole directory, it must be run from within the directory
to be imported. Say the directory /devel/ contains all files and subdirectories to be imported. The
directory name on the CVS (the module) will be called "myapp".
cvs import [options] directory-name vendor-tag release-tag
cd /devel # Must be inside the project to import it
cvs import myapp Company R1_0 # Release tag can be anything in one word

After a while a new directory "/devel/tools/" was added and it has to be imported too.
cd /devel/tools
cvs import myapp/tools Company R1_0

Checkout update add commit
cvs co myapp/tools # Will only checkout the directory tools
cvs co -r R1_1 myapp # Checkout myapp at release R1_1 (is sticky)
cvs -q -d update -P # A typical CVS update
cvs update -A # Reset any sticky tag (or date, option)
cvs add newfile # Add a new file
cvs add -kb newfile # Add a new binary file
cvs commit file1 file2 # Commit the two files only
cvs commit -m "message" # Commit all changes done with a message

Create a patch
It is best to create and apply a patch from the working development directory related to the project,
or from within the source directory.
cd /devel/project
diff -Naur olddir newdir > patchfile # Create a patch from a directory or a file
diff -Naur oldfile newfile > patchfile

Apply a patch
Sometimes it is necessary to strip a directory level from the patch, depending how it was created.
In case of difficulties, simply look at the first lines of the patch and try -p0, -p1 or -p2.
cd /devel/project
patch --dry-run -p0 < patchfile # Test the path without applying it
patch -p0 < patchfile
patch -p1 < patchfile # strip off the 1st level from the path

— CVS —

37

13 SVN
Server setup (p38) | SVN+SSH (p38) | SVN over http (p38) | SVN usage (p39)

Subversion (SVN)21 is a version control system designed to be the successor of CVS (Concurrent
Versions System). The concept is similar to CVS, but many shortcomings where improved. See also
the SVN book22.

13.1 Server setup

The initiation of the repository is fairly simple (here for example /home/svn/ must exist):

svnadmin create --fs-type fsfs /home/svn/project1

Now the access to the repository is made possible with:
• file:// Direct file system access with the svn client with. This requires local permissions

on the file system.
• svn:// or svn+ssh:// Remote access with the svnserve server (also over SSH). This

requires local permissions on the file system (default port: 2690/tcp).
• http:// Remote access with webdav using apache. No local users are necessary for this

method.
Using the local file system, it is now possible to import and then check out an existing project.
Unlike with CVS it is not necessary to cd into the project directory, simply give the full path:
svn import /project1/ file:///home/svn/project1/trunk -m 'Initial import'
svn checkout file:///home/svn/project1

The new directory "trunk" is only a convention, this is not required.

Remote access with ssh
No special setup is required to access the repository via ssh, simply replace file:// with svn+ssh/
hostname. For example:

svn checkout svn+ssh://hostname/home/svn/project1

As with the local file access, every user needs an ssh access to the server (with a local account)
and also read/write access. This method might be suitable for a small group. All users could belong
to a subversion group which owns the repository, for example:
groupadd subversion
groupmod -A user1 subversion
chown -R root:subversion /home/svn
chmod -R 770 /home/svn

Remote access with http (apache)
Remote access over http (https) is the only good solution for a larger user group. This method uses
the apache authentication, not the local accounts. This is a typical but small apache configuration:
LoadModule dav_module modules/mod_dav.so
LoadModule dav_svn_module modules/mod_dav_svn.so
LoadModule authz_svn_module modules/mod_authz_svn.so # Only for access control

<Location /svn>
DAV svn
any "/svn/foo" URL will map to a repository /home/svn/foo
SVNParentPath /home/svn
AuthType Basic
AuthName "Subversion repository"
AuthzSVNAccessFile /etc/apache2/svn.acl
AuthUserFile /etc/apache2/svn-passwd
Require valid-user

</Location>

The apache server needs full access to the repository:

21.http://subversion.tigris.org/
22.http://svnbook.red-bean.com/en/1.4/

— SVN —

38

http://subversion.tigris.org/
http://svnbook.red-bean.com/en/1.4/

chown -R www:www /home/svn

Create a user with htpasswd2:
htpasswd -c /etc/svn-passwd user1 # -c creates the file

Access control svn.acl example
Default it read access. "* =" would be default no access
[/]
* = r
[groups]
project1-developers = joe, jack, jane
Give write access to the developers
[project1:]
@project1-developers = rw

13.2 SVN commands and usage

See also the Subversion Quick Reference Card23. Tortoise SVN24 is a nice Windows interface.

Import
A new project, that is a directory with some files, is imported into the repository with the import
command. Import is also used to add a directory with its content to an existing project.
svn help import # Get help for any command

Add a new directory (with content) into the src dir on project1
svn import /project1/newdir http://host.url/svn/project1/trunk/src -m 'add newdir'

Typical SVN commands
svn co http://host.url/svn/project1/trunk # Checkout the most recent version

Tags and branches are created by copying
svn mkdir http://host.url/svn/project1/tags/ # Create the tags directory
svn copy -m "Tag rc1 rel." http://host.url/svn/project1/trunk \

http://host.url/svn/project1/tags/1.0rc1
svn status [--verbose] # Check files status into working dir
svn add src/file.h src/file.cpp # Add two files
svn commit -m 'Added new class file' # Commit the changes with a message
svn ls http://host.url/svn/project1/tags/ # List all tags
svn move foo.c bar.c # Move (rename) files
svn delete some_old_file # Delete files

14 USEFUL COMMANDS
less (p39) | vi (p40) | mail (p40) | tar (p40) | dd (p41) | screen (p42) | find (p43) | Miscellaneous
(p43)

14.1 less

The less command displays a text document on the console. It is present on most installation.

less unixtoolbox.xhtml

Some important commands are (^N stands for [control]-[N]):
h H good help on display
f ^F ^V SPACE Forward one window (or N lines).
b ^B ESC-v Backward one window (or N lines).
F Forward forever; like "tail -f".
/pattern Search forward for (N-th) matching line.
?pattern Search backward for (N-th) matching line.
n Repeat previous search (for N-th occurrence).
N Repeat previous search in reverse direction.
q quit

23.http://www.cs.put.poznan.pl/csobaniec/Papers/svn-refcard.pdf
24.http://tortoisesvn.tigris.org

— Useful Commands —

39

http://www.cs.put.poznan.pl/csobaniec/Papers/svn-refcard.pdf
http://tortoisesvn.tigris.org

14.2 vi

Vi is present on ANY Linux/Unix installation (not gentoo?) and it is therefore useful to know some
basic commands. There are two modes: command mode and insertion mode. The commands mode
is accessed with [ESC], the insertion mode with i. Use : help if you are lost.
The editors nano and pico are usually available too and are easier (IMHO) to use.

Quit
:w newfilename save the file to newfilename
:wq or :x save and quit
:q! quit without saving

Search and move
/string Search forward for string
?string Search back for string
n Search for next instance of string
N Search for previous instance of string
{ Move a paragraph back
} Move a paragraph forward
1G Move to the first line of the file
nG Move to the n th line of the file
G Move to the last line of the file
:%s/OLD/NEW/g Search and replace every occurrence

Delete copy paste text
dd (dw) Cut current line (word)
D Cut to the end of the line
x Delete (cut) character
yy (yw) Copy line (word) after cursor
P Paste after cursor
u Undo last modification
U Undo all changes to current line

14.3 mail

The mail command is a basic application to read and send email, it is usually installed. To send
an email simply type "mail user@domain". The first line is the subject, then the mail content.
Terminate and send the email with a single dot (.) in a new line. Example:
mail c@cb.vu
Subject: Your text is full of typos
"For a moment, nothing happened. Then, after a second or so,
nothing continued to happen."
.
EOT
#

This is also working with a pipe:
echo "This is the mail body" | mail c@cb.vu

This is also a simple way to test the mail server.

14.4 tar

The command tar (tape archive) creates and extracts archives of file and directories. The archive
.tar is uncompressed, a compressed archive has the extension .tgz or .tar.gz (zip) or .tbz (bzip2).
Do not use absolute path when creating an archive, you probably want to unpack it somewhere
else. Some typical commands are:

— Useful Commands —

40

Create
cd /
tar -cf home.tar home/ # archive the whole /home directory (c for create)
tar -czf home.tgz home/ # same with zip compression
tar -cjf home.tbz home/ # same with bzip2 compression

Only include one (or two) directories from a tree, but keep the relative structure. For example
archive /usr/local/etc and /usr/local/www and the first directory in the archive should be local/.
tar -C /usr -czf local.tgz local/etc local/www
tar -C /usr -xzf local.tgz # To untar the local dir into /usr
cd /usr; tar -xzf local.tgz # Is the same as above

Extract
tar -tzf home.tgz # look inside the archive without extracting (list)
tar -xf home.tar # extract the archive here (x for extract)
tar -xzf home.tgz # same with zip compression (-xjf for bzip2 compression)

remove leading path gallery2 and extract into gallery
tar --strip-components 1 -zxvf gallery2.tgz -C gallery/
tar -xjf home.tbz home/colin/file.txt # Restore a single file

More advanced
tar c dir/ | gzip | ssh user@remote 'dd of=dir.tgz' # arch dir/ and store remotely.
tar cvf - `find . -print` > backup.tar # arch the current directory.
tar -cf - -C /etc . | tar xpf - -C /backup/etc # Copy directories
tar -cf - -C /etc . | ssh user@remote tar xpf - -C /backup/etc # Remote copy.
tar -czf home.tgz --exclude '*.o' --exclude 'tmp/' home/

14.5 dd

The program dd (disk dump or destroy disk or see the meaning of dd) is used to copy partitions
and disks and for other copy tricks. Typical usage:
dd if=<source> of=<target> bs=<byte size> conv=<conversion>

Important conv options:
notrunc do not truncate the output file, all zeros will be written as zeros.
noerror continue after read errors (e.g. bad blocks)
sync pad every input block with Nulls to ibs-size

The default byte size is 512 (one block). The MBR, where the partition table is located, is on the
first block, the first 63 blocks of a disk are empty. Larger byte sizes are faster to copy but require
also more memory.

Backup and restore
dd if=/dev/hda of=/dev/hdc bs=16065b # Copy disk to disk (same size)
dd if=/dev/sda7 of=/home/root.img bs=4096 conv=notrunc,noerror # Backup /
dd if=/home/root.img of=/dev/sda7 bs=4096 conv=notrunc,noerror # Restore /
dd bs=1M if=/dev/ad4s3e | gzip -c > ad4s3e.gz # Zip the backup
gunzip -dc ad4s3e.gz | dd of=/dev/ad0s3e bs=1M # Restore the zip
dd bs=1M if=/dev/ad4s3e | gzip | ssh eedcoba@fry 'dd of=ad4s3e.gz' # also remote
gunzip -dc ad4s3e.gz | ssh eedcoba@host 'dd of=/dev/ad0s3e bs=1M'
dd if=/dev/ad0 of=/dev/ad2 skip=1 seek=1 bs=4k conv=noerror # Skip MBR

This is necessary if the destination (ad2) is smaller.

Recover
The command dd will read every single block of the partition. In case of problems it is better to
use the option conv=sync,noerror so dd will skip the bad block and write zeros at the destination.
Accordingly it is important to set the block size equal or smaller than the disk block size. A 1k size
seems safe, set it with bs=1k. If a disk has bad sectors and the data should be recovered from
a partition, create an image file with dd, mount the image and copy the content to a new disk.
With the option noerror, dd will skip the bad sectors and write zeros instead, thus only the data
contained in the bad sectors will be lost.

— Useful Commands —

41

http://roesler-ac.de/wolfram/acro/credits.htm

dd if=/dev/hda of=/dev/null bs=1m # Check for bad blocks
dd bs=1k if=/dev/hda1 conv=sync,noerror,notrunc | gzip | ssh \ # Send to remote
root@fry 'dd of=hda1.gz bs=1k'
dd bs=1k if=/dev/hda1 conv=sync,noerror,notrunc of=hda1.img # Store into an image
mount -o loop /hda1.img /mnt # Mount the image (page 13)
rsync -ax /mnt/ /newdisk/ # Copy on a new disk
dd if=/dev/hda of=/dev/hda # Refresh the magnetic state
The above is useful to refresh a disk. It is perfectly safe, but must be unmounted.

Delete
dd if=/dev/zero of=/dev/hdc # Delete full disk
dd if=/dev/urandom of=/dev/hdc # Delete full disk better
kill -USR1 PID # View dd progress (Linux)
kill -INFO PID # View dd progress (FreeBSD)

MBR tricks
The MBR contains the boot loader and the partition table and is 512 bytes small. The first 446 are
for the boot loader, the bytes 446 to 512 are for the partition table.
dd if=/dev/sda of=/mbr_sda.bak bs=512 count=1 # Backup the full MBR
dd if=/dev/zero of=/dev/sda bs=512 count=1 # Delete MBR and partition table
dd if=/mbr_sda.bak of=/dev/sda bs=512 count=1 # Restore the full MBR
dd if=/mbr_sda.bak of=/dev/sda bs=446 count=1 # Restore only the boot loader
dd if=/mbr_sda.bak of=/dev/sda bs=1 count=64 skip=446 seek=446 # Restore partition table

14.6 screen

Screen (a must have) has two main functionalities:
• Run multiple terminal session within a single terminal.
• A started program is decoupled from the real terminal and can thus run in the background.

The real terminal can be closed and reattached later.

Short start example
start screen with:
screen

Within the screen session we can start a long lasting program (like top).
top

Now detach with Ctrl-a Ctrl-d. Reattach the terminal with:
screen -R -D

In detail this means: If a session is running, then reattach. If necessary detach and logout remotely
first. If it was not running create it and notify the user. Or:
screen -x

Attach to a running screen in a multi display mode. The console is thus shared among multiple
users. Very useful for team work/debug!

Screen commands (within screen)
All screen commands start with Ctrl-a.

• Ctrl-a ? help and summary of functions
• Ctrl-a c create an new window (terminal)
• Ctrl-a Ctrl-n and Ctrl-a Ctrl-p to switch to the next or previous window in the list, by

number.
• Ctrl-a Ctrl-N where N is a number from 0 to 9, to switch to the corresponding window.
• Ctrl-a " to get a navigable list of running windows
• Ctrl-a a to clear a missed Ctrl-a
• Ctrl-a Ctrl-d to disconnect and leave the session running in the background
• Ctrl-a x lock the screen terminal with a password

— Useful Commands —

42

• Ctrl-a [enter into scrollback mode, exit with esc.
Use echo "defscrollback 5000" > ~/.screenrc to increase buffer (default is 100)

◦ C-u Scrolls a half page up
◦ C-b Scroll a full page up
◦ C-d Scroll a half page down
◦ C-f Scroll a full page down
◦ / Search forward
◦ ? Search backward

The screen session is terminated when the program within the running terminal is closed and you
logout from the terminal.

14.7 Find

Some important options:
-x (on BSD) -xdev (on Linux) Stay on the same file system (dev in fstab).
-exec cmd {} \; Execute the command and replace {} with the full path
-iname Like -name but is case insensitive
-ls Display information about the file (like ls -la)
-size n n is +-n (k M G T P)
-cmin n File's status was last changed n minutes ago.

find . -type f ! -perm -444 # Find files not readable by all
find . -type d ! -perm -111 # Find dirs not accessible by all
find /home/user/ -cmin 10 -print # Files created or modified in the last 10 min.
find . -name '*.[ch]' | xargs grep -E 'expr' # Search 'expr' in this dir and below.
find / -name "*.core" | xargs rm # Find core dumps and delete them (also try core.*)
find / -name "*.core" -print -exec rm {} \; # Other syntax

Find images and create an archive, iname is not case sensitive. -r for append
find . \(-iname "*.png" -o -iname "*.jpg" \) -print -exec tar -rf images.tar {} \;
find . -type f -name "*.txt" ! -name README.txt -print # Exclude README.txt files
find /var/ -size +10M -exec ls -lh {} \; # Find large files > 10 MB
find /var/ -size +10M -ls # This is simpler
find . -size +10M -size -50M -print
find /usr/ports/ -name work -type d -print -exec rm -rf {} \; # Clean the ports

Find files with SUID; those file are vulnerable and must be kept secure
find / -type f -user root -perm -4000 -exec ls -l {} \;

Be careful with xarg or exec as it might or might not honor quotings and can return wrong results
when files or directories contain spaces. In doubt use "-print0 | xargs -0" instead of "| xargs". The
option -print0 must be the last in the find command. See this nice mini tutorial for find25.
find . -type f | xargs ls -l # Will not work with spaces in names
find . -type f -print0 | xargs -0 ls -l # Will work with spaces in names
find . -type f -exec ls -l '{}' \; # Or use quotes '{}' with -exec

14.8 Miscellaneous
which command # Show full path name of command
time command # See how long a command takes to execute
time cat # Use time as stopwatch. Ctrl-c to stop
set | grep $USER # List the current environment
cal -3 # Display a three month calendar
date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]
date 10022155 # Set date and time
whatis grep # Display a short info on the command or word
whereis java # Search path and standard directories for word
setenv varname value # Set env. variable varname to value (csh/tcsh)
export varname="value" # set env. variable varname to value (sh/ksh/bash)
pwd # Print working directory
mkdir -p /path/to/dir # no error if existing, make parent dirs as needed
mkdir -p project/{bin,src,obj,doc/{html,man,pdf},debug/some/more/dirs}
rmdir /path/to/dir # Remove directory
rm -rf /path/to/dir # Remove directory and its content (force)

25.http://www.hccfl.edu/pollock/Unix/FindCmd.htm

— Useful Commands —

43

http://www.hccfl.edu/pollock/Unix/FindCmd.htm

rm -- -badchar.txt # Remove file whitch starts with a dash (-)
cp -la /dir1 /dir2 # Archive and hard link files instead of copy
cp -lpR /dir1 /dir2 # Same for FreeBSD
cp unixtoolbox.xhtml{,.bak} # Short way to copy the file with a new extension
mv /dir1 /dir2 # Rename a directory
ls -1 # list one file per line
history | tail -50 # Display the last 50 used commands
cd - # cd to previous ($OLDPWD) directory

Check file hashes with openssl. This is a nice alternative to the commands md5sum or sha1sum
(FreeBSD uses md5 and sha1) which are not always installed.

openssl md5 file.tar.gz # Generate an md5 checksum from file
openssl sha1 file.tar.gz # Generate an sha1 checksum from file
openssl rmd160 file.tar.gz # Generate a RIPEMD-160 checksum from file

15 INSTALL SOFTWARE

Usually the package manager uses the proxy variable for http/ftp requests. In .bashrc:
export http_proxy=http://proxy_server:3128
export ftp_proxy=http://proxy_server:3128

15.1 List installed packages
rpm -qa # List installed packages (RH, SuSE, RPM based)
dpkg -l # Debian, Ubuntu
pkg_info # FreeBSD list all installed packages
pkg_info -W smbd # FreeBSD show which package smbd belongs to
pkginfo # Solaris

15.2 Add/remove software

Front ends: yast2/yast for SuSE, redhat-config-packages for Red Hat.
rpm -i pkgname.rpm # install the package (RH, SuSE, RPM based)
rpm -e pkgname # Remove package

SuSE zypper (see doc and cheet sheet)26

zypper refresh # Refresh repositorie
zypper install vim # Install the package vim
zypper remove vim # Remove the package vim
zypper search vim # Search packages with vim
zypper update vim # Search packages with vim

Debian
apt-get update # First update the package lists
apt-get install emacs # Install the package emacs
dpkg --remove emacs # Remove the package emacs
dpkg -S file # find what package a file belongs to

Gentoo
Gentoo uses emerge as the heart of its "Portage" package management system.
emerge --sync # First sync the local portage tree
emerge -u packagename # Install or upgrade a package
emerge -C packagename # Remove the package
revdep-rebuild # Repair dependencies

Solaris
The <cdrom> path is usually /cdrom/cdrom0.

26.http://en.opensuse.org/Zypper/Usage

— Install Software —

44

http://en.opensuse.org/Zypper/Usage

pkgadd -d <cdrom>/Solaris_9/Product SUNWgtar
pkgadd -d SUNWgtar # Add downloaded package (bunzip2 first)
pkgrm SUNWgtar # Remove the package

FreeBSD
pkg_add -r rsync # Fetch and install rsync.
pkg_delete /var/db/pkg/rsync-xx # Delete the rsync package

Set where the packages are fetched from with the PACKAGESITE variable. For example:

export PACKAGESITE=ftp://ftp.freebsd.org/pub/FreeBSD/ports/i386/packages/Latest/
or ftp://ftp.freebsd.org/pub/FreeBSD/ports/i386/packages-6-stable/Latest/

FreeBSD ports27

The port tree /usr/ports/ is a collection of software ready to compile and install (see man ports).
The ports are updated with the program portsnap.

portsnap fetch extract # Create the tree when running the first time
portsnap fetch update # Update the port tree
cd /usr/ports/net/rsync/ # Select the package to install
make install distclean # Install and cleanup (also see man ports)
make package # Make a binary package of this port
pkgdb -F # Fix the package registry database
portsclean -C -DD # Clean workdir and distdir (part of portupgrade)

OS X MacPorts28 (use sudo for all commands)
port selfupdate # Update the port tree (safe)
port installed # List installed ports
port deps apache2 # List dependencies for this port
port search pgrep # Search for string
port install proctools # Install this package
port variants ghostscript # List variants of this port
port -v install ghostscript +no_x11# -no_x11 for negative value
port clean --all ghostscript # Clean workdir of port
port upgrade ghostscript # Upgrade this port
port uninstall ghostscript # Uninstall this port
port -f uninstall installed # Uninstall everything

15.3 Library path

Due to complex dependencies and runtime linking, programs are difficult to copy to an other system
or distribution. However for small programs with little dependencies, the missing libraries can be
copied over. The runtime libraries (and the missing one) are checked with ldd and managed with
ldconfig.

ldd /usr/bin/rsync # List all needed runtime libraries
otool -L /usr/bin/rsync # OS X equivalent to ldd
ldconfig -n /path/to/libs/ # Add a path to the shared libraries directories
ldconfig -m /path/to/libs/ # FreeBSD
LD_LIBRARY_PATH # The variable set the link library path

16 CONVERT MEDIA

Sometimes one simply need to convert a video, audio file or document to another format.

16.1 Text encoding

Text encoding can get totally wrong, specially when the language requires special characters like
àäç. The command iconv can convert from one encoding to an other.

27.http://www.freebsd.org/handbook/ports.html

28.http://guide.macports.org/

— Convert Media —

45

http://www.freebsd.org/handbook/ports.html
http://guide.macports.org/

iconv -f <from_encoding> -t <to_encoding> <input_file>
iconv -f ISO8859-1 -t UTF-8 -o file.input > file_utf8
iconv -l # List known coded character sets

Without the -f option, iconv will use the local char-set, which is usually fine if the document displays
well.

16.2 Unix - DOS newlines

Convert DOS (CR/LF) to Unix (LF) newlines and back within a Unix shell. See also dos2unix and
unix2dos if you have them.

sed 's/.$//' dosfile.txt > unixfile.txt # DOS to UNIX
awk '{sub(/\r$/,"");print}' dosfile.txt > unixfile.txt # DOS to UNIX
awk '{sub(/$/,"\r");print}' unixfile.txt > dosfile.txt # UNIX to DOS

Convert Unix to DOS newlines within a Windows environment. Use sed or awk from mingw or
cygwin.
sed -n p unixfile.txt > dosfile.txt
awk 1 unixfile.txt > dosfile.txt # UNIX to DOS (with a cygwin shell)

16.3 PDF to Jpeg and concatenate PDF files

Convert a PDF document with gs (GhostScript) to jpeg (or png) images for each page. Also much
shorter with convert and mogrify (from ImageMagick or GraphicsMagick).

gs -dBATCH -dNOPAUSE -sDEVICE=jpeg -r150 -dTextAlphaBits=4 -dGraphicsAlphaBits=4 \
-dMaxStripSize=8192 -sOutputFile=unixtoolbox_%d.jpg unixtoolbox.pdf
convert unixtoolbox.pdf unixtoolbox-%03d.png
convert *.jpeg images.pdf # Create a simple PDF with all pictures
convert image000* -resample 120x120 -compress JPEG -quality 80 images.pdf
mogrify -format png *.ppm # convert all ppm images to png format

Ghostscript can also concatenate multiple pdf files into a single one. This only works well if the PDF
files are "well behaved".
gs -q -sPAPERSIZE=a4 -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -sOutputFile=all.pdf \
file1.pdf file2.pdf ... # On Windows use '#' instead of '='

16.4 Convert video

Compress the Canon digicam video with an mpeg4 codec and repair the crappy sound.
mencoder -o videoout.avi -oac mp3lame -ovc lavc -srate 11025 \
-channels 1 -af-adv force=1 -lameopts preset=medium -lavcopts \
vcodec=msmpeg4v2:vbitrate=600 -mc 0 vidoein.AVI

See sox for sound processing.

16.5 Copy an audio cd

The program cdparanoia29 can save the audio tracks (FreeBSD port in audio/cdparanoia/), oggenc
can encode in Ogg Vorbis format, lame converts to mp3.

cdparanoia -B # Copy the tracks to wav files in current dir
lame -b 256 in.wav out.mp3 # Encode in mp3 256 kb/s
for i in *.wav; do lame -b 256 $i `basename $i .wav`.mp3; done
oggenc in.wav -b 256 out.ogg # Encode in Ogg Vorbis 256 kb/s

29.http://xiph.org/paranoia/

— Convert Media —

46

http://sox.sourceforge.net/
http://xiph.org/paranoia/
http://xiph.org/paranoia/

17 PRINTING

17.1 Print with lpr
lpr unixtoolbox.ps # Print on default printer
export PRINTER=hp4600 # Change the default printer
lpr -Php4500 #2 unixtoolbox.ps # Use printer hp4500 and print 2 copies
lpr -o Duplex=DuplexNoTumble ... # Print duplex along the long side
lpr -o PageSize=A4,Duplex=DuplexNoTumble ...

lpq # Check the queue on default printer
lpq -l -Php4500 # Queue on printer hp4500 with verbose
lprm - # Remove all users jobs on default printer
lprm -Php4500 3186 # Remove job 3186. Find job nbr with lpq
lpc status # List all available printers
lpc status hp4500 # Check if printer is online and queue length

Some devices are not postscript and will print garbage when fed with a pdf file. This might be solved
with:
gs -dSAFER -dNOPAUSE -sDEVICE=deskjet -sOutputFile=\|lpr file.pdf

Print to a PDF file even if the application does not support it. Use gs on the print command instead
of lpr.

gs -q -sPAPERSIZE=a4 -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -sOutputFile=/path/file.pdf

18 DATABASES

18.1 PostgreSQL

Change root or a username password
psql -d template1 -U pgsql
> alter user pgsql with password 'pgsql_password'; # Use username instead of "pgsql"

Create user and database
The commands createuser, dropuser, createdb and dropdb are convenient shortcuts equivalent
to the SQL commands. The new user is bob with database bobdb ; use as root with pgsql the
database super user:
createuser -U pgsql -P bob # -P will ask for password
createdb -U pgsql -O bob bobdb # new bobdb is owned by bob
dropdb bobdb # Delete database bobdb
dropuser bob # Delete user bob

The general database authentication mechanism is configured in pg_hba.conf

Grant remote access
The file $PGSQL_DATA_D/postgresql.conf specifies the address to bind to. Typically
listen_addresses = '*' for Postgres 8.x.
The file $PGSQL_DATA_D/pg_hba.conf defines the access control. Examples:

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host bobdb bob 212.117.81.42 255.255.255.255 password
host all all 0.0.0.0/0 password

Backup and restore
The backups and restore are done with the user pgsql or postgres. Backup and restore a single
database:
pg_dump --clean dbname > dbname_sql.dump
psql dbname < dbname_sql.dump

Backup and restore all databases (including users):

— Printing —

47

pg_dumpall --clean > full.dump
psql -f full.dump postgres

In this case the restore is started with the database postgres which is better when reloading an
empty cluster.

18.2 MySQL

Change mysql root or username password

Method 1
/etc/init.d/mysql stop
or
killall mysqld
mysqld --skip-grant-tables
mysqladmin -u root password 'newpasswd'
/etc/init.d/mysql start

Method 2
mysql -u root mysql
mysql> UPDATE USER SET PASSWORD=PASSWORD("newpassword") where user='root';
mysql> FLUSH PRIVILEGES; # Use username instead of "root"
mysql> quit

Create user and database (see MySQL doc30)
mysql -u root mysql
mysql> CREATE USER 'bob'@'localhost' IDENTIFIED BY 'pwd'; # create only a user
mysql> CREATE DATABASE bobdb;
mysql> GRANT ALL ON *.* TO 'bob'@'%' IDENTIFIED BY 'pwd'; # Use localhost instead of %

to restrict the network access
mysql> DROP DATABASE bobdb; # Delete database
mysql> DROP USER bob; # Delete user
mysql> DELETE FROM mysql.user WHERE user='bob and host='hostname'; # Alt. command
mysql> FLUSH PRIVILEGES;

Grant remote access
Remote access is typically permitted for a database, and not all databases. The file /etc/my.cnf
contains the IP address to bind to. (On FreeBSD my.cnf not created per fedault, copy one .cnf
file from /usr/local/share/mysql to /usr/local/etc/my.cnf) Typically comment the line bind-
address = out.

mysql -u root mysql
mysql> GRANT ALL ON bobdb.* TO bob@'xxx.xxx.xxx.xxx' IDENTIFIED BY 'PASSWORD';
mysql> REVOKE GRANT OPTION ON foo.* FROM bar@'xxx.xxx.xxx.xxx';
mysql> FLUSH PRIVILEGES; # Use 'hostname' or also '%' for full access

Backup and restore
Backup and restore a single database:
mysqldump -u root -psecret --add-drop-database dbname > dbname_sql.dump
mysql -u root -psecret -D dbname < dbname_sql.dump

Backup and restore all databases:
mysqldump -u root -psecret --add-drop-database --all-databases > full.dump
mysql -u root -psecret < full.dump

Here is "secret" the mysql root password, there is no space after -p. When the -p option is used
alone (w/o password), the password is asked at the command prompt.

18.3 SQLite

SQLite31 is a small powerful self-contained, serverless, zero-configuration SQL database.
30.http://dev.mysql.com/doc/refman/5.1/en/adding-users.html

— Databases —

48

http://dev.mysql.com/doc/refman/5.1/en/adding-users.html
http://www.sqlite.org

Dump and restore
It can be useful to dump and restore an SQLite database. For example you can edit the dump file
to change a column attribute or type and then restore the database. This is easier than messing
with SQL commands. Use the command sqlite3 for a 3.x database.

sqlite database.db .dump > dump.sql # dump
sqlite database.db < dump.sql # restore

Convert 2.x to 3.x database
sqlite database_v2.db .dump | sqlite3 database_v3.db

19 DISK QUOTA

A disk quota allows to limit the amount of disk space and/or the number of files a user or (or
member of group) can use. The quotas are allocated on a per-file system basis and are enforced by
the kernel.

19.1 Linux setup

The quota tools package usually needs to be installed, it contains the command line tools.
Activate the user quota in the fstab and remount the partition. If the partition is busy, either all
locked files must be closed, or the system must be rebooted. Add usrquota to the fstab mount
options, for example:
/dev/sda2 /home reiserfs rw,acl,user_xattr,usrquota 1 1
mount -o remount /home
mount # Check if usrquota is active, otherwise reboot

Initialize the quota.user file with quotacheck.

quotacheck -vum /home
chmod 644 /home/aquota.user # To let the users check their own quota

Activate the quota either with the provided script (e.g. /etc/init.d/quotad on SuSE) or with quotaon:

quotaon -vu /home

Check that the quota is active with:
quota -v

19.2 FreeBSD setup

The quota tools are part of the base system, however the kernel needs the option quota. If it is not
there, add it and recompile the kernel.
options QUOTA

As with Linux, add the quota to the fstab options (userquota, not usrquota):
/dev/ad0s1d /home ufs rw,noatime,userquota 2 2
mount /home # To remount the partition

Enable disk quotas in /etc/rc.conf and start the quota.
grep quotas /etc/rc.conf
enable_quotas="YES" # turn on quotas on startup (or NO).
check_quotas="YES" # Check quotas on startup (or NO).
/etc/rc.d/quota start

19.3 Assign quota limits

The quotas are not limited per default (set to 0). The limits are set with edquota for single users.
A quota can be also duplicated to many users. The file structure is different between the quota
implementations, but the principle is the same: the values of blocks and inodes can be limited. Only

31.http://www.sqlite.org

— Disk Quota —

49

change the values of soft and hard. If not specified, the blocks are 1k. The grace period is set with
edquota -t. For example:

edquota -u colin

Linux
Disk quotas for user colin (uid 1007):
Filesystem blocks soft hard inodes soft hard
/dev/sda8 108 1000 2000 1 0 0

FreeBSD
Quotas for user colin:
/home: kbytes in use: 504184, limits (soft = 700000, hard = 800000)

inodes in use: 1792, limits (soft = 0, hard = 0)

For many users
The command edquota -p is used to duplicate a quota to other users. For example to duplicate a
reference quota to all users:
edquota -p refuser `awk -F: '$3 > 499 {print $1}' /etc/passwd`
edquota -p refuser user1 user2 # Duplicate to 2 users

Checks
Users can check their quota by simply typing quota (the file quota.user must be readable). Root
can check all quotas.
quota -u colin # Check quota for a user
repquota /home # Full report for the partition for all users

20 SHELLS

Most Linux distributions use the bash shell while the BSDs use tcsh, the bourne shell is only used
for scripts. Filters are very useful and can be piped:

grep Pattern matching
sed Search and Replace strings or characters
cut Print specific columns from a marker
sort Sort alphabetically or numerically
uniq Remove duplicate lines from a file

For example used all at once:
ifconfig | sed 's/ / /g' | cut -d" " -f1 | uniq | grep -E "[a-z0-9]+" | sort -r
ifconfig | sed '/.*inet addr:/!d;s///;s/ .*//'|sort -t. -k1,1n -k2,2n -k3,3n -k4,4n

The first character in the sed pattern is a tab. To write a tab on the console, use ctrl-v ctrl-tab.

20.1 bash

Redirects and pipes for bash and sh:
cmd 1> file # Redirect stdout to file.
cmd 2> file # Redirect stderr to file.
cmd 1>> file # Redirect and append stdout to file.
cmd &> file # Redirect both stdout and stderr to file.
cmd >file 2>&1 # Redirects stderr to stdout and then to file.
cmd1 | cmd2 # pipe stdout to cmd2
cmd1 2>&1 | cmd2 # pipe stdout and stderr to cmd2

Modify your configuration in ~/.bashrc (it can also be ~/.bash_profile). The following entries are
useful, reload with ". .bashrc". With cygwin use ~/.bash_profile; with rxvt past with shift + left-
click.

— Shells —

50

in .bashrc
bind '"\e[A"':history-search-backward # Use up and down arrow to search
bind '"\e[B"':history-search-forward # the history. Invaluable!
set -o emacs # Set emacs mode in bash (see below)
set bell-style visible # Do not beep, inverse colors

Set a nice prompt like [user@host]/path/todir>
PS1="\[\033[1;30m\][\[\033[1;34m\]\u\[\033[1;30m\]"
PS1="$PS1@\[\033[0;33m\]\h\[\033[1;30m\]]\[\033[0;37m\]"
PS1="$PS1\w\[\033[1;30m\]>\[\033[0m\]"

To check the currently active aliases, simply type alias
alias ls='ls -aF' # Append indicator (one of */=>@|)
alias ll='ls -aFls' # Listing
alias la='ls -all'
alias ..='cd ..'
alias ...='cd ../..'
export HISTFILESIZE=5000 # Larger history
export CLICOLOR=1 # Use colors (if possible)
export LSCOLORS=ExGxFxdxCxDxDxBxBxExEx

20.2 tcsh

Redirects and pipes for tcsh and csh (simple > and >> are the same as sh):
cmd >& file # Redirect both stdout and stderr to file.
cmd >>& file # Append both stdout and stderr to file.
cmd1 | cmd2 # pipe stdout to cmd2
cmd1 |& cmd2 # pipe stdout and stderr to cmd2

The settings for csh/tcsh are set in ~/.cshrc, reload with "source .cshrc". Examples:

in .cshrc
alias ls 'ls -aF'
alias ll 'ls -aFls'
alias la 'ls -all'
alias .. 'cd ..'
alias ... 'cd ../..'
set prompt = "%B%n%b@%B%m%b%/> " # like user@host/path/todir>
set history = 5000
set savehist = (6000 merge)
set autolist # Report possible completions with tab
set visiblebell # Do not beep, inverse colors

Bindkey and colors
bindkey -e Select Emacs bindings # Use emacs keys to edit the command prompt
bindkey -k up history-search-backward # Use up and down arrow to search
bindkey -k down history-search-forward
setenv CLICOLOR 1 # Use colors (if possible)
setenv LSCOLORS ExGxFxdxCxDxDxBxBxExEx

The emacs mode enables to use the emacs keys shortcuts to modify the command prompt line.
This is extremely useful (not only for emacs users). The most used commands are:

C-a Move cursor to beginning of line
C-e Move cursor to end of line
M-b Move cursor back one word
M-f Move cursor forward one word
M-d Cut the next word
C-w Cut the last word
C-u Cut everything before the cursor
C-k Cut everything after the cursor (rest of the line)
C-y Paste the last thing to be cut (simply paste)
C-_ Undo

Note: C- = hold control, M- = hold meta (which is usually the alt or escape key).

— Shells —

51

21 SCRIPTING
Basics (p52) | Script example (p53) | awk (p53) | sed (p53) | Regular Expressions (p53) | useful
commands (p54)

The Bourne shell (/bin/sh) is present on all Unix installations and scripts written in this language
are (quite) portable; man 1 sh is a good reference.

21.1 Basics

Variables and arguments
Assign with variable=value and get content with $variable
MESSAGE="Hello World" # Assign a string
PI=3.1415 # Assign a decimal number
N=8
TWON=`expr $N * 2` # Arithmetic expression (only integers)
TWON=$(($N * 2)) # Other syntax
TWOPI=`echo "$PI * 2" | bc -l` # Use bc for floating point operations
ZERO=`echo "c($PI/4)-sqrt(2)/2" | bc -l`

The command line arguments are
$0, $1, $2, ... # $0 is the command itself
$# # The number of arguments
$* # All arguments (also $@)

Special Variables
$$ # The current process ID
$? # exit status of last command
command
if [$? != 0]; then
echo "command failed"

fi
mypath=`pwd`
mypath=${mypath}/file.txt
echo ${mypath##*/} # Display the filename only
echo ${mypath%%.*} # Full path without extention
var2=${var:=string} # Use var if set, otherwise use string

assign string to var and then to var2.

Constructs
for file in `ls`
do

echo $file
done

count=0
while [$count -lt 5]; do

echo $count
sleep 1
count=$(($count + 1))

done

myfunction() {
find . -type f -name "*.$1" -print # $1 is first argument of the function

}
myfunction "txt"

Generate a file
MYHOME=/home/colin
cat > testhome.sh << _EOF
All of this goes into the file testhome.sh
if [-d "$MYHOME"] ; then

— Scripting —

52

echo $MYHOME exists
else

echo $MYHOME does not exist
fi
_EOF
sh testhome.sh

21.2 Bourne script example

As a small example, the script used to create a PDF booklet from this xhtml document:
#!/bin/sh
This script creates a book in pdf format ready to print on a duplex printer
if [$# -ne 1]; then # Check the argument
echo 1>&2 "Usage: $0 HtmlFile"
exit 1 # non zero exit if error

fi

file=$1 # Assign the filename
fname=${file%.*} # Get the name of the file only
fext=${file#*.} # Get the extension of the file

prince $file -o $fname.pdf # from www.princexml.com
pdftops -paper A4 -noshrink $fname.pdf $fname.ps # create postscript booklet
cat $fname.ps |psbook|psnup -Pa4 -2 |pstops -b "2:0,1U(21cm,29.7cm)" > $fname.book.ps

ps2pdf13 -sPAPERSIZE=a4 -sAutoRotatePages=None $fname.book.ps $fname.book.pdf
use #a4 and #None on Windows!

exit 0 # exit 0 means successful

21.3 Some awk commands

Awk is useful for field stripping, like cut in a more powerful way. Search this document for other
examples. See for example gnulamp.com and one-liners for awk for some nice examples.
awk '{ print $2, $1 }' file # Print and inverse first two columns
awk '{printf("%5d : %s\n", NR,$0)}' file # Add line number left aligned
awk '{print FNR "\t" $0}' files # Add line number right aligned
awk NF test.txt # remove blank lines (same as grep '.')
awk 'length > 80' # print line longer than 80 char)

21.4 Some sed commands

Here is the one liner gold mine32. And a good introduction and tutorial to sed33.
sed 's/string1/string2/g' # Replace string1 with string2
sed -i 's/wroong/wrong/g' *.txt # Replace a recurring word with g
sed 's/\(.*\)1/\12/g' # Modify anystring1 to anystring2
sed '/<p>/,/<\/p>/d' t.xhtml # Delete lines that start with <p>

and end with </p>
sed '/ *#/d; /^ *$/d' # Remove comments and blank lines
sed 's/[\t]*$//' # Remove trailing spaces (use tab as \t)
sed 's/^[\t]*//;s/[\t]*$//' # Remove leading and trailing spaces
sed 's/[^*]/[&]/' # Enclose first char with [] top->[t]op
sed = file | sed 'N;s/\n/\t/' > file.num # Number lines on a file

21.5 Regular Expressions

Some basic regular expression useful for sed too. See Basic Regex Syntax34 for a good primer.
[\^$.|?*+() # special characters any other will match themselves
\ # escapes special characters and treat as literal
* # repeat the previous item zero or more times
. # single character except line break characters

32.http://student.northpark.edu/pemente/sed/sed1line.txt
33.http://www.grymoire.com/Unix/Sed.html
34.http://www.regular-expressions.info/reference.html

— Scripting —

53

http://www.gnulamp.com/awk.html
http://student.northpark.edu/pemente/awk/awk1line.txt
http://student.northpark.edu/pemente/sed/sed1line.txt
http://www.grymoire.com/Unix/Sed.html
http://www.regular-expressions.info/reference.html

.* # match zero or more characters
^ # match at the start of a line/string
$ # match at the end of a line/string
.$ # match a single character at the end of line/string
^ $ # match line with a single space
[^A-Z] # match any line beginning with any char from A to Z

21.6 Some useful commands

The following commands are useful to include in a script or as one liners.
sort -t. -k1,1n -k2,2n -k3,3n -k4,4n # Sort IPv4 ip addresses
echo 'Test' | tr '[:lower:]' '[:upper:]' # Case conversion
echo foo.bar | cut -d . -f 1 # Returns foo
PID=$(ps | grep script.sh | grep bin | awk '{print $1}') # PID of a running script
PID=$(ps axww | grep [p]ing | awk '{print $1}') # PID of ping (w/o grep pid)
IP=$(ifconfig $INTERFACE | sed '/.*inet addr:/!d;s///;s/ .*//') # Linux
IP=$(ifconfig $INTERFACE | sed '/.*inet /!d;s///;s/ .*//') # FreeBSD
if [`diff file1 file2 | wc -l` != 0]; then [...] fi # File changed?
cat /etc/master.passwd | grep -v root | grep -v *: | awk -F":" \ # Create http passwd
'{ printf("%s:%s\n", $1, $2) }' > /usr/local/etc/apache2/passwd

testuser=$(cat /usr/local/etc/apache2/passwd | grep -v \ # Check user in passwd
root | grep -v *: | awk -F":" '{ printf("%s\n", $1) }' | grep ^user$)
:(){ :|:& };: # bash fork bomb. Will kill your machine
tail +2 file > file2 # remove the first line from file

I use this little trick to change the file extension for many files at once. For example from .cxx to
.cpp. Test it first without the | sh at the end. You can also do this with the command rename if
installed. Or with bash builtins.
ls *.cxx | awk -F. '{print "mv "$0" "$1".cpp"}' | sh
ls *.c | sed "s/.*/cp & &.$(date "+%Y%m%d")/" | sh # e.g. copy *.c to *.c.20080401
rename .cxx .cpp *.cxx # Rename all .cxx to cpp
for i in *.cxx; do mv $i ${i%%.cxx}.cpp; done # with bash builtins

22 PROGRAMMING

22.1 C basics
strcpy(newstr,str) /* copy str to newstr */
expr1 ? expr2 : expr3 /* if (expr1) expr2 else expr3 */
x = (y > z) ? y : z; /* if (y > z) x = y; else x = z; */
int a[]={0,1,2}; /* Initialized array (or a[3]={0,1,2}; */
int a[2][3]={{1,2,3},{4,5,6}}; /* Array of array of ints */
int i = 12345; /* Convert in i to char str */
char str[10];
sprintf(str, "%d", i);

22.2 C example

A minimal c program simple.c:
#include <stdio.h>
main() {

int number=42;
printf("The answer is %i\n", number);

}

Compile with:
gcc simple.c -o simple
./simple
The answer is 42

— Programming —

54

22.3 C++ basics
*pointer // Object pointed to by pointer
&obj // Address of object obj
obj.x // Member x of class obj (object obj)
pobj->x // Member x of class pointed to by pobj

// (*pobj).x and pobj->x are the same

22.4 C++ example

As a slightly more realistic program in C++: a class in its own header (IPv4.h) and implementation
(IPv4.cpp) and a program which uses the class functionality. The class converts an IP address in
integer format to the known quad format.

IPv4 class

IPv4.h:
#ifndef IPV4_H
#define IPV4_H
#include <string>

namespace GenericUtils { // create a namespace
class IPv4 { // class definition
public:

IPv4(); ~IPv4();
std::string IPint_to_IPquad(unsigned long ip);// member interface

};
} //namespace GenericUtils
#endif // IPV4_H

IPv4.cpp:
#include "IPv4.h"
#include <string>
#include <sstream>
using namespace std; // use the namespaces
using namespace GenericUtils;

IPv4::IPv4() {} // default constructor/destructor
IPv4::~IPv4() {}
string IPv4::IPint_to_IPquad(unsigned long ip) { // member implementation

ostringstream ipstr; // use a stringstream
ipstr << ((ip &0xff000000) >> 24) // Bitwise right shift

<< "." << ((ip &0x00ff0000) >> 16)
<< "." << ((ip &0x0000ff00) >> 8)
<< "." << ((ip &0x000000ff));

return ipstr.str();
}

The program simplecpp.cpp
#include "IPv4.h"
#include <iostream>
#include <string>
using namespace std;
int main (int argc, char* argv[]) {

string ipstr; // define variables
unsigned long ipint = 1347861486; // The IP in integer form
GenericUtils::IPv4 iputils; // create an object of the class
ipstr = iputils.IPint_to_IPquad(ipint); // call the class member
cout << ipint << " = " << ipstr << endl; // print the result

return 0;
}

— Programming —

55

Compile and execute with:
g++ -c IPv4.cpp simplecpp.cpp # Compile in objects
g++ IPv4.o simplecpp.o -o simplecpp.exe # Link the objects to final executable
./simplecpp.exe
1347861486 = 80.86.187.238

Use ldd to check which libraries are used by the executable and where they are located. Also used
to check if a shared library is missing or if the executable is static.
ldd /sbin/ifconfig # list dynamic object dependencies
ar rcs staticlib.a *.o # create static archive
ar t staticlib.a # print the objects list from the archive
ar x /usr/lib/libc.a version.o # extract an object file from the archive
nm version.o # show function members provided by object

22.5 Simple Makefile

The minimal Makefile for the multi-source program is shown below. The lines with instructions must
begin with a tab! The back slash "\" can be used to cut long lines.
CC = g++
CFLAGS = -O
OBJS = IPv4.o simplecpp.o

simplecpp: ${OBJS}
${CC} -o simplecpp ${CFLAGS} ${OBJS}

clean:
rm -f ${TARGET} ${OBJS}

23 ONLINE HELP

23.1 Documentation

Linux Documentation en.tldp.org
Linux Man Pages www.linuxmanpages.com
Linux commands directorywww.oreillynet.com/linux/cmd
Linux doc man howtos linux.die.net
FreeBSD Handbook www.freebsd.org/handbook
FreeBSD Man Pages www.freebsd.org/cgi/man.cgi
FreeBSD user wiki www.freebsdwiki.net
Solaris Man Pages docs.sun.com/app/docs/coll/40.10

23.2 Other Unix/Linux references

Rosetta Stone for Unix bhami.com/rosetta.html (a Unix command translator)
Unix guide cross reference unixguide.net/unixguide.shtml
Linux commands line list www.linuxcmd.org
Short Linux reference www.pixelbeat.org/cmdline.html
Little command line goodieswww.shell-fu.org

That's all folks!

This document: "Unix Toolbox revision 14.3" is licensed under a Creative Commons Licence
[Attribution - Share Alike]. © Colin Barschel 2007-2011. Some rights reserved.

— Online Help —

56

http://en.tldp.org/
http://www.linuxmanpages.com/
http://www.oreillynet.com/linux/cmd/
http://linux.die.net/
http://www.freebsd.org/handbook/
http://www.freebsd.org/cgi/man.cgi
http://www.freebsdwiki.net
http://docs.sun.com/app/docs/coll/40.10
http://bhami.com/rosetta.html
http://unixguide.net/unixguide.shtml
http://www.linuxcmd.org
http://www.pixelbeat.org/cmdline.html
http://www.shell-fu.org
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
mailto:c_at_cb.vu

	System
	Hardware Informations
	Linux
	FreeBSD

	Load, statistics and messages
	Users
	Limits
	Linux
	Per shell/script
	Per user/process
	System wide

	FreeBSD
	Per shell/script
	Per user/process
	System wide

	Solaris

	Runlevels
	Linux
	FreeBSD
	Windows

	Reset root password
	Linux method 1
	FreeBSD method 1
	Unixes and FreeBSD and Linux method 2

	Kernel modules
	Linux
	FreeBSD

	Compile Kernel
	Linux
	FreeBSD

	Repair grub

	Processes
	Listing and PIDs
	Priority
	Background/Foreground
	Top
	Signals/Kill

	File System
	Permissions
	Disk information
	Boot
	FreeBSD

	System mount points/Disk usage
	Disk usage

	Who has which files opened
	FreeBSD and most Unixes
	Linux

	Mount/remount a file system
	FreeBSD
	Linux
	Mount a FreeBSD partition with Linux

	Remount

	Add swap on-the-fly
	Mount an SMB share
	Linux
	FreeBSD

	Mount an image
	Linux loop-back
	FreeBSD
	Solaris and FreeBSD

	Create and burn an ISO image
	Burn a CD/DVD ISO image
	FreeBSD
	Linux
	dvd+rw-tools

	Convert a Nero .nrg file to .iso
	Convert a bin/cue image to .iso

	Create a file based image
	FreeBSD
	Linux
	Linux with losetup

	Create a memory file system
	FreeBSD
	Linux

	Disk performance

	Network
	Debugging (See also Traffic analysis)
	Linux
	Other OSes

	Routing
	Print routing table
	Add and delete a route
	FreeBSD
	Linux
	Solaris
	Windows

	Configure additional IP addresses
	Linux
	FreeBSD
	Solaris

	Change MAC address
	Ports in use
	Firewall
	Linux
	FreeBSD

	IP Forward for routing
	Linux
	FreeBSD
	Solaris

	NAT Network Address Translation
	Linux
	FreeBSD

	DNS
	Windows
	Flush DNS
	Forward queries
	Reverse queries
	/etc/hosts

	DHCP
	Linux
	FreeBSD
	Windows

	Traffic analysis
	Sniff with tcpdump
	Scan with nmap

	Traffic control (QoS)
	Limit upload
	Linux
	FreeBSD

	Quality of service
	Linux
	Calculate port range and mask
	FreeBSD

	NIS Debugging
	Linux

	Netcat
	File transfer
	Other hacks
	Remote shell
	Emergency web server
	Chat

	SSH SCP
	Public key authentication
	Using the Windows client from ssh.com
	Using putty for Windows

	Check fingerprint
	Secure file transfer
	Tunneling
	Direct forward on the gate
	Netbios and remote desktop forward to a second server
	Debug

	Connect two clients behind NAT
	Connect to VNC behind NAT
	Dig a multi-hop ssh tunnel
	Create tunnel in one shell
	Use tunnel with an other shell

	Autoconnect and keep alive script

	VPN with SSH
	Single P2P connection
	Connect to the server
	Server is on Linux
	Server is on FreeBSD

	Configure the client

	Connect two networks
	Connect from gateA to gateB
	gateB is on Linux
	gateB is on FreeBSD

	Configure gateA
	gateA is on Linux
	gateA is on FreeBSD

	RSYNC
	Rsync on Windows
	Public key authentication
	Automatic backup

	SUDO
	Configuration

	Encrypt Files
	OpenSSL
	A single file
	tar and encrypt a whole directory
	tar zip and encrypt a whole directory

	GPG
	Using keys
	Encrypt for personal use only
	Encrypt - Decrypt with keys
	Key administration

	Encrypt Partitions
	Linux
	dm-crypt with LUKS
	Create encrypted partition
	Attach
	Detach

	dm-crypt without LUKS

	FreeBSD
	Use password and key
	Create encrypted partition
	Attach
	Detach
	/etc/fstab

	Use password only

	OS X Encrypted Disk Image

	SSL Certificates
	Procedure
	Configure OpenSSL
	Create a certificate authority
	Create a certificate signing request
	Sign the certificate
	Create united certificate
	View certificate information

	CVS
	Server setup
	Initiate the CVS
	Network setup with inetd
	Separate authentication

	Test it
	CVSROOT variable

	SSH tunneling for CVS
	CVS commands and usage
	Import
	Checkout update add commit
	Create a patch
	Apply a patch

	SVN
	Server setup
	Remote access with ssh
	Remote access with http (apache)
	Access control svn.acl example

	SVN commands and usage
	Import
	Typical SVN commands

	Useful Commands
	less
	vi
	Quit
	Search and move
	Delete copy paste text

	mail
	tar
	Create
	Extract
	More advanced

	dd
	Backup and restore
	Recover
	Delete
	MBR tricks

	screen
	Short start example
	Screen commands (within screen)

	Find
	Miscellaneous

	Install Software
	List installed packages
	Add/remove software
	SuSE zypper (see doc and cheet sheet)http://en.opensuse.org/Zypper/Usage
	Debian
	Gentoo
	Solaris
	FreeBSD
	FreeBSD portshttp://www.freebsd.org/handbook/ports.html
	OS X MacPortshttp://guide.macports.org/ (use sudo for all commands)

	Library path

	Convert Media
	Text encoding
	Unix - DOS newlines
	PDF to Jpeg and concatenate PDF files
	Convert video
	Copy an audio cd

	Printing
	Print with lpr

	Databases
	PostgreSQL
	Change root or a username password
	Create user and database
	Grant remote access
	Backup and restore

	MySQL
	Change mysql root or username password
	Method 1
	Method 2

	Create user and database (see MySQL dochttp://dev.mysql.com/doc/refman/5.1/en/adding-users.html)
	Grant remote access
	Backup and restore

	SQLite
	Dump and restore
	Convert 2.x to 3.x database

	Disk Quota
	Linux setup
	FreeBSD setup
	Assign quota limits
	Linux
	FreeBSD
	For many users
	Checks

	Shells
	bash
	tcsh

	Scripting
	Basics
	Variables and arguments
	Special Variables
	Constructs
	Generate a file

	Bourne script example
	Some awk commands
	Some sed commands
	Regular Expressions
	Some useful commands

	Programming
	C basics
	C example
	C++ basics
	C++ example
	IPv4 class
	IPv4.h:
	IPv4.cpp:

	The program simplecpp.cpp

	Simple Makefile

	Online Help
	Documentation
	Other Unix/Linux references

