
IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 1 of 89

Nets Denmark A/S

Lautrupbjerg 10

P.O. 500

DK-2750 Ballerup

T +45 44 68 44 68

F +45 44 86 09 30

www.nets.eu

CVR-nr. 20016175

Implementation Guidelines for NemID

(OCES)

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 2 of 89

Table of Contents

1 The Purpose and Target Group of the Document 7

2 Introduction ... 8

2.1 Document Conventions ... 8

2.2 Integrating the NemID JavaScript client overview 8

2.2.1 Iframe integration ... 9

2.2.2 Iframe size ...10

2.2.3 Parameters ...11

3 NemID JavaScript Client Integration12

3.1 Parameters ...13

3.2 Parameter integrity ...19

3.2.1 Parameter normalization ..19

3.3 Start-up and handling responses21

3.4 UI Modes..22

3.4.1 Limited mode ..22

3.4.2 Standard mode ..23

3.4.3 UI modes comparison ..24

3.5 NemID JavaScript client integration for Mobile Applications24

3.6 Tab Index ...24

4 Authentication ...25

5 Signing ..25

5.1 Plain text signing ..26

5.2 HTML signing...26

5.2.1 Html element restrictions ...26

5.2.2 CSS Restrictions...27

5.3 XML signing ..27

5.3.1 XSLT Output Method ...28

5.4 PDF Signing ..29

5.4.1 External PDF f iles and Cross-origin Resource Sharing.............30

5.4.2 PDF whitelisting ...31

6 Response handling ..34

6.1 The structure of the response message34

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 3 of 89

6.2 Verifying the user’s certif icate ..35

6.3 Logging..38

6.4 Response codes ...38

7 Direct integration with Nets DanID’s infrastructure39

8 Remember user id ..40

8.1 Standard Mode ..40

8.2 Limited Mode...41

9 Code app settings ...43

10 NemID Service Provider package44

10.1.1 The resources of the Service Provider package44

10.1.2 LogonHandler ..44

10.1.3 SignHandler...47

10.1.4 Example of web application in Java47

10.1.5 Example of web application in .NET51

10.1.6 Validation of CPR numbers ..52

11 Security Guidelines ...54

11.1 HTTP Headers ..54

12 Integration with the NemID CodeFile client..........................55

12.1 Parameters ...56

12.2 Logs..58

12.2.1 CodeFile native application logs58

12.2.2 CodeFile Internet Explorer extension logs58

12.2.3 CodeFile Chrome extension, Firefox extension and iframe logs 58

13 Standards and algorithms ...59

13.1 XMLDSig ..59

13.1.1 Migration to MitID ...59

13.2 XMLEnc ..60

13.3 Cryptographic algorithms..60

A. References..61

B. Deprecated or renamed parameters62

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 4 of 89

C. PDF Whitelist ...63

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 5 of 89

Version History

31 January 2014 Version 1.3 OYVMO

25 March 2014 Version 1.4 PHJER

14 April 2014 Version 1.5 OYVMO

12 May 2014 Version 1.6 OYVMO

19 May 2014 Version 1.7 RPLAU

20 May 2014 Version 1.8 OYVMO

22 May 2014 Version 1.9 PHJER

3 June 2014 Version 2.0 KSANO

6 June 2014 Version 2.1 PHJER

1 August 2014 Version 2.2 OYVMO

19 August 2014 Version 2.3 OYVMO

3 September 2014 Version 2.4 KSANO

9 September 2014 Version 2.5 OYVMO

20 October 2014 Version 2.6 OYVMO

28 October 2014 Version 2.7 OYVMO

30 October 2014 Version 2.8 OYVMO

29 January 2015 Version 2.9 KMAIB

9 February 2015 Version 3.0 STNOR

2 March 2015 Version 3.1 PKAJB

24 June 2015 Version 3.2 PCKOC

August 10 2015 Version 3.3 RPLAU

August 25 2015 Version 3.4 PKAJB

September 10 2015 Version 3.5 RMELD

September 16 2015 Version 3.6 KPERS

September 30 2015 Version 3.7 PKAJB

February 5 2016 Version 3.8 MDCHR

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 6 of 89

March 30 2016 Version 3.9 PCKOC

April 04 2016 Version 4.0 ABHAN

April 05 2016 Version 4.1 ABHAN

April 07 2016 Version 4.2 ABHAN

April 13 2016 Version 4.3 ABHAN

April 15 2016 Version 4.4 ABHAN

April 19 2016 Version 4.5 PCKOC

April 25 2016 Version 4.6 PCKOC

May 18 2016 Version 4.7 PKAJB

June 18 2016 Version 4.8 KMAIB

September 14 2016 Version 4.9 MMELI

February 9, 2017 Version 5.0 MMELI

October 30 2017 Version 5.1 RPLAU

January 29, 2018 Version 5.2 RMELG

April 16, 2018 Version 5.3 RKAUR

May 1, 2018 Version 5.4 RMELG

May 14, 2018 Version 5.5 PRANN

May 14, 2018 Version 5.6 PRANN

September 11, 2018 Version 5.7 RMELG

December 19, 2019 Version 5.7.1 RMELG

January 13, 2021 Version 5.7.2 RMELG

January 18, 2021 Version 5.7.3 MNRUS

March 11, 2021 Version 5.7.4 MNRUS

September 29, 2021 Version 5.7.5 TTAUB

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 7 of 89

1 The Purpose and Target Group of the

Document

This document is part of the NemID Service Provider Package.

The purpose of this document is to serve as the technical

documentation for integrating the NemID JavaScript

clients.

The document is aimed at developers and architects.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 8 of 89

2 Introduction

This document serves as the technical documentation for integrating

with the NemID JavaScript client and with the NemID CodeFile client.

Its intended audiences are developers and architects.

2.1 Document Conventions

Code examples and XML snippets are written using a fixed width font .

References are included by adding the reference key after a relevant

sentence, e.g. [XMLDsig]. The list of references can be found in

appendix A.

Most URLs for accessing the NemID JavaScript client and other NemID

systems are documented in the document “Configuration and setup”

which is available as part of the Service Provider documentation [SP-

docs].

2.2 Integrating the NemID JavaScript client overview

This section is meant as a way for Service Providers to gain a quick

overview of the development effort required to integrate with the NemID

JavaScript client.

Please note that the Danish Agency for Digitisation has developed a
special Service Provider package, called "LSS for NemID TU-package" that

provides support for tablets and smartphones for users with NemID
employee signature as code f ile in companies using a local signature

server (LSS).

This feature is now fully integrated in the NemID CodeFile client and does

not need a separate implementation by the individual Service Provider.

The documentation of LSS for NemID is available at https://www.lss-for-

nemid.dk.

https://www.lss-for-nemid.dk/
https://www.lss-for-nemid.dk/

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 9 of 89

2.2.1 Iframe integration

The NemID JavaScript client is integrated with the Service Provider’s

page using an <iframe> element, which enables a web page to allocate a

segment of its area to another page.

An <iframe> element does not allow its content to expand beyond its

borders, which necessitates that an area sufficient for every possible

screen size is allocated when it is created.

Please see Figure 3-2 for details about minimum width and height of the

iframe.

Figure 2-1 - The NemID JavaScript client in limited mode 320*460

with the recommended option of “Remember userid”. The dashed

line indicates the extent of the iframe.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 10 of 89

Note that the NemID JavaScript client does not support “quirks mode”

for Internet Explorer. Unfortunately, if the containing page is rendered

in quirks mode, then all <iframe> elements in that page are also

rendered in quirks mode. Therefore, the Service Provider’s page must

avoid quirks mode. Take particular care regarding the HTML DOCTYPE

declaration, and consider adding a meta tag to the HTML header like:

<meta http-equiv="X-UA-Compatible" content="IE=edge">

Example <iframe> element for integrating the NemID JavaScript client

with the Service Provider’s page:

<iframe id="nemid_iframe" title="NemID" allowfullscreen="true"

scrolling="no" frameborder="0"

style="width:320px;height:460px;border:0" src="https://…"></iframe>

Screen readers (accessibility tools) depend on the title attribute for

describing iframes, and we suggest that it is set simply to “NemID”.

Note also that the allowfullscreen="true" attribute should be set on the

iframe element whenever the JavaScript client will initiate PDF signing

f lows, so that full screen viewing of the sign text will be available to the

user.

Chapter 3. NemID JavaScript client integration describes how to

integrate the NemID JavaScript client in more detail.

2.2.2 Iframe size

As stated above the size of the iframe that the Service Provider creates

for the NemID JavaScript client is determined by the different iframe

properties controlled by the Service Provider and the minimum sizes

defined by Nets.

Figure 2-2

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 11 of 89

The above f igure 2-2 indicates that the Service Provider must consider

the sum of the iframe attributes margin, border and padding together

with the minimum size indicated by the Nets, i.e. the size of the iframe

must be the required client size plus the padding, border and margin.

There are requirement in regards to the size of the Blue area in the

picture above. Please f ind more details in Figure 3-2.

Height min = client minimum height + top(border+margin+padding) +

buttom (border + margin + padding)

Width min = client minimum width + left (border+margin+padding) +

right(border+margin+padding)

2.2.3 Parameters

Client parameters are supplied as a JSON structure. The parameters are

transmitted to the client using the postMessage functionality that is part

HTML5 [Web Messaging].

All parameter names and most parameter values are case insensitive.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 12 of 89

The NemID

JavaScript

client is

integrated in the Service Provider’s page using an <iframe> element.

Communication between the NemID JavaScript client in the <iframe>

and the Service Provider’s page is carried out using the HTML5 APIs for

cross-domain communication1 [Web Messaging].

Because the NemID JavaScript client’s iframe element must exist within

a containing HTML document, any meta tags that are included in the

head element of the HTML document might also affect the NemID

JavaScript client. The Service Provider can thus control some aspects of

the user experience:

• <meta name="viewport">

The viewport meta tag controls the dimensions and resolutions of

the browser viewport and can affect how mobile browsers display

and scale the content. A useful setting can be:

<meta name="viewport" content="width=device-width, initial-

scale=1.0, user-scalable=no">

The URL of the client, which must be used as the <iframe> element’s

SRC attribute, is specif ied in the document “Configuration and setup”

[SP-docs].

Please note that the <random> postfix of the URL must be a constantly

changing number such as system time in milliseconds. Its purpose is to

prevent caching of resources in the client.

The NemID JavaScript client is initialized by taking the following steps

1. The Service Provider page is opened with an iframe pointing to

the NemID JavaScript client URL.

2. The NemID JavaScript client transmits a SendParameters

message to the Service Provider page to indicate when it is ready

to receive its parameters.

3. The Service Provider page transmits a message containing the

client’s initialization parameters.

1 http://html5test.com/compare/feature/communication-postMessage.html

3 NemID JavaScript Client Integration

http://html5test.com/compare/feature/communication-postMessage.html

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 13 of 89

4. The client initializes based on the parameters and the user can

interact with it.

5. Based on the user’s action, the Service Provider page receives

either a signed message or a response code indicating what

prevented the user from completing the operation.

The f low is illustrated in Figure 3-1 below.

3.1 Parameters

The NemID JavaScript client receives the parameters in a JSON object.

Each parameter consists of a name and a value, both of which are

strings. An example of parameters in a JSON object is given below.

Figure 3-1 – The NemID JavaScript client integration flow

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 14 of 89

{

 "TimeStamp": "2014-02-25 08:37:48+0100",

 "ClientFlow": "ocessign2",

 "Signtext_Format": "html",

 "Params_Digest": "UO5hbuKUcfgjxdfAWzjy04G5hyJ2vUa9GdR3yWwXKm0=",

 "Digest_signature": "FHbj9p8k … CIjAmi9TblUZqJI=",

 "SP_cert": "MIIE/DCCBGWgAwIBAgIEQDgI … 358IwXJUJWnVOln+o=",

 "Signtext": "PGh0bWw+PGJv … Ym9keT48L2h0bWw+"

}

The ordering of the parameters in the JSON object holds no signif icance.

All parameter names are case-insensitive. Some values, e.g. base64

encoded strings or URLs, are case-sensitive.

The following tables contain a description of the parameters.

Name Description Allowed Values

CLIENTFLOW

mandatory
Determines which

NemID f low to start

• OCESLOGIN2

2 factor OCES login

• OCESSIGN2

2 factor OCES signing

CLIENTMODE Previously determined

the client mode, either

standard or limited, but

is now ignored.

Use the launcher url

instead to control client

mode.

• STANDARD

• LIMITED

CREDENTIAL_UPDATE Used to indicate that

the user wants to

change credentials

(user alias and / or

password)

• PASSWORD => User is

prompted to change

password

• ALIAS => User is prompted

to change user alias and

password

• Any other value => User is

not prompted to change

any credentials (default)

DIGEST_SIGNATURE

Mandatory
Base64 encoded RSA

signature of the

calculated parameter

digest.

See chapter 3.2 for

information on this

parameter.

Signature on the calculated digest

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 15 of 89

DO_NOT_SHOW_CANC

EL
Used to prevent the

Cancel button from

being displayed in the

UserID Password

screen

The paramter is only

relevant for standard

mode, the cancel X is

always shown in

responsive mode

• TRUE => The cancel button

is not displayed

• Any other value (default) -

The cancel button is

displayed.

ENABLE_AWAITING_A

PP_APPROVAL_EVENT
Indicates if the JS

client should send out

an awaiting app

approval event. The

event can be caught

outside the JS client

using the event handler

set-up from section 3.3

where command will be

“AwaitingAppApproval”.

• TRUE => Enable awaiting

app approval event

• Any other value or unset

(default) => No event

LANGUAGE Client language • DA

Danish - default

• EN

English

• KL

Greenlandic

ORIGIN

Optional, but highly

recommended

The origin of the

Service Provider site

which will send

parameters to

the NemID JavaScript

client. The NemID

JavaScript client will

abort with APP001 or

APP007 if a

postMessage command

is received from any

other origin.

URL describing the domain, in the

format:

protocol://ip:port

Example: The ORIGIN for an

Service Provider login-site at

https://example.com/nemidlogin.aspx

would be https://example.com

ORIGIN supports punycode DNS,

so an Unicoded DNS must be

added to ORIGIN as Punycode.

Example (only DNS part gets

punycoded):

Unicode site: https://www.æøå.dk

Use ORIGIN: https://www.xn--

5cab8c.dk

https://example.com/nemidlogin.aspx
https://example.com/

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 16 of 89

PARAMS_DIGEST

Mandatory
Base64 encoded

representation of the

calculated parameter

digest.

See chapter 3.2.for

information on this

parameter.

Calculated digest of parameters

PREVENT_OTP_CARD

Optional

Indicates that the use of

OTP card must be

prevented.

• TRUE => prevent use of

OTP card

• Any other value or unset

(de-fault) => do not

prevent use of OTP card

REMEMBER_USERID

Optional, but highly

recommended

Base64 encoded token

returned from the

client when the user

chooses to remember

his user id. At next

login/signing this

parameter must be

specif ied in order to

enable the remember

user id functionality.

Prior returned token or the empty

string if the user has not

remembered his user id previously.

REMEMBER_USERID_I

NITIAL_STATUS

Optional, but highly

recommended

Indicates that the

“Remember userid

checkbox” should not

be initially checked.

This is only relevant in

responsive mode and

when

REMEMBER_USERID is

also set.

• FALSE => “Remember

userid checkbox” is not

checked.

• Any other value or unset

(default) => “Remember

userid checkbox” is checked

SIGNTEXT

It is mandatory to

specify either

SIGNTEXT or

SIGNTEXT_URI for all

signing flows

Base64 encoded

representation of the

actual text signed by

the user. Must be in

the format specified by

the SIGNTEXT_FORMAT

parameter.

SIGNTEXT_FORMAT

Optional (relevant for

signing flows only)

The format of input

given by SIGNTEXT

parameter

• TEXT

plain, unformatted text

(default value)

• HTML

• XML

• PDF

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 17 of 89

SIGNTEXT_MONOSPA

CEFONT
Indicates that plaintext

should be rendered

with a mono-spaced

font (to allow for

indentionbased

formatting)

• TRUE => Mono space font

is used for plaintext

• Any other value => Default

font is used

SIGNTEXT_REMOTE_H

ASH

Mandatory if

SIGNTEXT_URI is

specified

Base64 encoded

SHA256 hash of the

remote PDF document

SIGNTEXT_TRANSFOR

MATION

Mandatory if

SIGNTEXT_FORMAT is

XML

Base64 encoded XSLT

stylesheet that

transforms the XML

signtext into a HTML

document, which is

displayed to the user

for signing

SIGNTEXT_TRANSFOR

MATION_ID

Identif ier for XML

stylesheet

SIGNTEXT_URI

It is mandatory to

specify either

SIGNTEXT or

SIGNTEXT_URI for all

signing flows

URI used to load a PDF

document

asynchronously

URI must be well formed. Only

http or https are supported

SIGN_PROPERTIES XMLDSIG properties to

be included in signed

response

SP_CERT

Mandatory

Base64 encoded DER

representation of the

certif icate used for

identifying the OCES

Service Provider

Certif icate must be issued by a

Nets-DanID trusted Certificate

Authority

SUPPRESS_PUSH_TO_

DEVICE

Optional

Indicates that a

notif ication should NOT

be pushed to a mobile

device. The device

must pull the

notif ication.

• TRUE => mobile device
must pull the notif ication

• Any other value or unset

(default) => push

notif ication to mobile

devices

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 18 of 89

TIMESTAMP

Mandatory
Current time when

generating parameters.

The timestamp

parameter is converted

to UTC and must match

the NemID server time.

NemID accepts

timestamps within the

boundaries of 3

minutes.

Current time expressed as one of:

• yyyy-MM-dd HH:mm:ssZ

E.g. 2014-06-03

07:09:13+0200 or 2014-

06-03 09:09:13CEST. The

timezone can be left out, in

which case server time will

be assumed.

• Epoch

Milliseconds since 1970-01-

01 00:00:00

Both plaintext and base64 encoded

is acceptable.

TRANSACTION_CONTE

XT

Optional

Base64 encoded text

describing the

transaction.

Will be part of the

notif ication sent to a

mobile device and will

be displayed in the

NemID code app when

the user approved the

login/signing.

Only used if the user approved the

transaction in the code app.

The string can be max 100 chars

long and if not provided a standard

message will be displayed in the

code app e.g.

Logon: ”Log på hos

##SPNAME##”

Signing: ”Handling hos

##SPNAME##”

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 19 of 89

3.2 Parameter integrity

To ensure the integrity of the parameters in transit between the Service

Provider and the NemID JavaScript client, they must be signed by the

Service Provider.

The process for securing the client parameters is

1. The Service Provider collects the list of client parameters. The list

is normalized (see section 3.2.1) into a string, and the SHA-256

digest value of the string’s UTF-8 representation is calculated.

2. The digest value is signed by the Service Provider.

3. The BASE64-encoded value of the digest and the signature are

added as the parameters PARAMS_DIGEST and

DIGEST_SIGNATURE.

4. All parameters are collected in a JSON-message and sent to the

NemID JavaScript client.

5. The client reads the parameters and normalizes them, excluding

the digest value and the signature parameters. The digest value

is verif ied.

6. The client sends the digest and the digest signature to the

NemID server, which verifies the signature using the public key

of the Service Provider. The certificate must be a VOCES

certif icate that has been issued as part of the NemID enrollment

process.

3.2.1 Parameter normalization

The digest of the client’s parameters are calculated from a normalized

version of the parameters.

The process for normalizing the parameters is

1. The parameters are sorted alphabetically by name. The sorting is

case-insensitive.

2. Each parameter is concatenated to the result string as an

alternating sequence of name and value:

name1 || value1 || name2 || value2 || … || namen || valuen

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 20 of 89

The result of the concatenation is the normalized list of parameters.

Below is a normalized version of the parameter example that was given

above:

ClientFlowocessign2SigntextPGh0bWw+PGJv...Ym9keT48L2h0bWw+Signtext_F

ormathtmlSP_certMIIE/DCCBGWgAwIBAgIEQDgI...358IwXJUJWnVOln+o=TimeSta

mp2014-02-25 08:37:48+0100

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 21 of 89

3.3 Start-up and handling responses

Figure 3-1 contains an overview of the communication f low between a

Service Provider and the NemID JavaScript client.

The nature of the HTML5 postMessage API makes it necessary to use a

synchronization message to signal to the Serivce Provider page when

the client is ready. This is what is referred to as the SendParameters

message above. The Service Provider must wait until it receives that

message, and then transmit the parameters to the client.

The following JavaScript, intended to run in a Service Provider’s page, is

a simple example of how to handle the message exchange. Note that

the value of nemid_server_url_prefix should match the iframe src

attribute for the NemID JavaScript client as specif ied in the the

Configuration and Setup document [SP-docs].

function onNemIDMessage(e) {

 var event = e || event;

 var win =

 document.getElementById("nemid_iframe").contentWindow,

 postMessage = {}, message;

 try { message = JSON.parse(event.data); } catch (e) { return;

/*ignore not JSON */ }

 if (event.origin !== nemid_server_url_prefix) {

 window.alert("Received message from unexpected origin : " +

event.origin);

 return;

 }

 if (message.command === "SendParameters") {

 var htmlParameters =

document.getElementById("nemid_parameters").innerHTML;

 postMessage.command = "parameters";

 postMessage.content = htmlParameters;

 win.postMessage(JSON.stringify(postMessage),

nemid_server_url_prefix);

 }

 if (message.command === "changeResponseAndSubmit") {

 document.postBackForm.response.value = message.content;

 document.postBackForm.submit();

 }

}

if (window.addEventListener) {

 window.addEventListener("message", onNemIDMessage);

} else if (window.attachEvent) {

 window.attachEvent("onmessage", onNemIDMessage);

}

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 22 of 89

The code attaches an event listener to the message event, which is f ired

whenever the document receives a message from other documents

[Web Messaging]. The event listener, in this case the function named

onNemIDMessage, handles the following cases:

• The reception of a SendParameters message, which indicates that

the client has f inished its basic initialization and is ready to

receive the Service Provider parameters. The parameters are

taken from the script tag with the identif ier nemid_parameters

(not shown in the example) and sent in a message to the client

using the postMessage function.

• The reception of the changeResponseAndSubmit message, which

indicates that either a login or a signing f low has been

completed. The code inside each handler inserts the response

into a FORM element (not shown in the example) and submits the

form.

3.4 UI Modes

The NemID JavaScript client can be started in one of two available

modes: The standard mode and the limited mode. Each mode is

described in the sections below.

3.4.1 Limited mode

This is the recommended mode for the NemID JavaScript client for both

mobile devices and desktop clients.

Characteristics of Limited Mode and advantages compared to Standard

Mode:

• Responsive GUI f itting content to the chosen iframe size

• Optimized button sizes for touch screens (Bigger buttons)

• Optimized input boxes for touch screens (Bigger input boxes)

• Help screens is positioning as an overlay the current screen

(secondary screens)

• Texts in GUI has been revised in order to be more precise

• Scrolling has been minimized on small screen sizes (200*250)

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 23 of 89

• Layout has been optimized with space for the keyboard on mobile

devices

• The Login procedure has been optimized, so the user needs to

click fewer times.

• Signing screens optimized for mobile devices, so scrolling

horizontally is avoided

• Facelifted GUI compared to standard mode

• Supports Desktop and mobile clients equally good

Limited mode was originally introduced to address the needs of Service

Providers that have a page layout in which the size requirements for

standard mode could not be implemented, and for embedding the client

in pages designed for smaller screens, e.g. mobile devices.

A client started in “limited mode” must be given a minimum width and a

minimum height but will adapt itself to the allocated area. Minimum

width and height are language depended and described in Figure 3-2.

No screen in limited mode will require more space than what is initially

allocated.

The client will always occupy the entire iframe size regardless of flow

e.g. login, signing, f irst time activation and so on. As it will never

require more space than it was initially allocated, it can also be used in

web page layouts if restrictions exist that prevent the standard mode

from being used.

All f lows and operations are supported in limited mode.

3.4.2 Standard mode

A client started in standard mode must be allocated a minimum width

and height which is illustrated in Figure 3-2. Be aware that the client

during a normal login f low will not occupy the entire iframe. However,

during special f lows, for example first time activation, the client will

expand and occupy the entire iframe. This is mentioned in Figure 3-2 as

well.

All f lows and operations are supported in standard mode.

It is not recommended to use the standard mode for mobile devices.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 24 of 89

3.4.3 UI modes comparison

The following feature matrix explains the main functional dif ferences

between limited mode and standard mode:

 1.1.1 Standard mode

1.1.2 (Width * Height)

1.1.3 Limited mode

1.1.4 (Width * Height)

1.1.5 Non-signing screens

1.1.6 Limited mode

(Width * Height)

Signing screens

Minimum size for

Danish and

English

500px * 450px 200px * 250px (*1) 320px * 460px

Minimum size for

Greenlandic

500px * 450px 250px * 300px (*1) 320px * 460px

Minimum

Recommended

size

500px * 450px 320px * 460px 320px * 460px

Dynamic scaling of

GUI to f ill iframe

Signing screens

only.

Yes Yes

Figure 3-2

*1: If the width is 300px or above, then the recommended height is 460 in order

to minimise scrolling within the iframe. For signing screens, it is recommended

to set the height, so the sign text is readable or use the maximum size of the

screen on mobile devices.

3.5 NemID JavaScript client integration for Mobile

Applications

For Service Providers who wish to integrate the NemID JavaScript client

into a mobile application a separate mobile integration document exists

([Mobile-doc]). This document is accompanied by code examples for

the iOS and Android platform ([Mobile-code]). For Windows phone a

short guide with implementation pointers is supplied in the mobile

integration document ([Mobile-doc]).

3.6 Tab Index

The NemID JavaScript client uses tabindex from 51-55 in order to

control the tab f low in the client.

If other UI elements are present on the same web page as the client

then make sure to avoid using the tabindexes reserved by the NemID

JavaScript client.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 25 of 89

4 Authentication

An OCES authentication f low is initiated by setting the CLIENTFLOW

parameter to OCESLOGIN2.

Service Providers identify themselves to NemID by including their

VOCES certif icate in the SP_CERT parameter, and by signing the

parameter digest with the private key, as described in section 3.2.on

parameter integrity.

NemID verifies that the certificate is valid and that the parameters were

indeed signed using the corresponding private key.

A timestamp must be supplied in the TIMESTAMP parameter in order to

limit the time a parameter object is valid.

Handling the response from a successful OCES authentication is identical

to handling the response from a successful signing operation. The steps

required to do this are covered in chapter 6.

5 Signing

This section describes the signing functionality of the NemID JavaScript

client.

The following sign text formats are supported: HTML, XML, plain text

and PDF.

Sign texts must be given as a base64-encoded parameter to the client.

A URL to the document can also be supplied in the case of PDF

documents. Upon successful signing, the base64 string is included

unmodif ied as a property in the signed document.

If a signing operation is unsuccessful, an error code is returned to the

Service Provider. The error code is given to the Service Provider base64

encoded.

The signing specif ic parameters are described in section 3.1.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 26 of 89

5.1 Plain text signing

Plain text signing will display the sign text directly to the user with white

space preserved. If the SIGNTEXT_MONOSPACEFONT parameter is

used, a f ixed width font will be used for displaying the sign text.

5.2 HTML signing

The HTML signing f low displays styled html to the user. Only a subset of

HTML and CSS is allowed, and the sign text must therefore comply

strictly with both HTML and CSS whitelists. Note that external CSS style

sheets are not allowed. If any illegal content is found, the session is

aborted with the APP002 error code.

5.2.1 Html element restrictions

The table below lists the allowed HTML elements and their attributes. No

other elements, including HTML comments, can be used in a HTML sign

text.

HTML Element Supported attributes

html xmlns

body text bgcolor class style

head

style type

title

p align bgcolor style class

div align bgcolor style class

ul style class

ol start type style class

li class style

h1 h2 h3 class style

h4 h5 h6 class style

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 27 of 89

font face size color

table border cellspacing cellpadding width align

tr bgcolor class style

th td bgcolor rowspan colspan align valign width

class style

i b u

center

a href name

Links may point to named anchors within the document, but cannot

point to external documents.

5.2.2 CSS Restrictions

A limited set of CSS styles are supported. Please note that external CSS

f iles are not supported. The following CSS styles are supported:

background background-color bottom

color clear display

float height left

line-height margin margin-right

margin-top margin-left margin-bottom

overflow position right

top width

white-space

Additionally, the following CSS families are supported, meaning that all

styles matching the pattern “familyname-*” are supported:

border font list

padding text

5.3 XML signing

Signing of XML documents adds the following parameters to the client:

SIGNTEXT_TRANSFORMATION

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 28 of 89

A base64 encoded XSLT style sheet that can transform the XML

document in the SIGNTEXT parameter into a HTML document that

adheres to the rules outlined in section 5.2.

SIGNTEXT_TRANSFORMATION_ID

This optional parameter allows the Service Provider to include an

identif ier for the transformation used. The value of this parameter will

be included as a property in the signed document and may assist the

Service Provider in later referencing the transformation that was used

for displaying the sign text.

The parameter will be XML-encoded prior to being included in the

resulting document but will not be modif ied in other ways.

5.3.1 XSLT Output Method

The most predictable output from an XSLT transformation is gained by

setting the output method to XML. This is the recommended setting for

all XML transformations.

<xsl:output method="xml" omit-xml-declaration="yes" indent="no"/>

Read on below for an explanation.

XSLT supports three output methods, TEXT, HTML and XML.

Transformations will default to XML if nothing else is explicitly specif ied,

unless the output document can be recognized as a HTML document, in

which case the output method is set to HTML.

The XSLT specif ication details a number of transformations that XSLT

engines must apply to output documents when the output method is

HTML2, e.g. collapse boolean attributes and adding meta elements. The

level of adherence to these rules differs across browsers and should thus

be considered unpredictable.

The most predictable output from an XSLT transformation is achieved by

specifying the output method to be XML, as in the following example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

2 http://www.w3.org/TR/xslt#section-HTML-Output-Method

http://www.w3.org/TR/xslt#section-HTML-Output-Method

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 29 of 89

 <xsl:output method="xml" omit-xml-declaration="yes"

indent="no"/>

 <xsl:template match="/"><html><body><h1>Transaction</h2>

 …

</xsl:stylesheet>

Furthermore, the resulting HTML document must start with standard top

tag <HTML> otherwise it might not validate on all platforms.

A simple example generating valid HTML:

XML:

<?xml version="1.0" encoding="UTF-8"?>

<list>

 <item>

 <line1>DanID</line1>

 <line2>NemID</line2>

 </item>

</list>

XSL:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" omit-xml-declaration="yes" indent="no" />

<xsl:template match="/">

 <html>

 <body>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th>Line 1</th>

 <th>Line 2</th>

 </tr>

 <tr>

 <td><xsl:value-of select="list/item/line1"/></td>

 <td><xsl:value-of select="list/item/line2"/></td>

 </tr>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

5.4 PDF Signing

PDF Signing will display the PDF document directly in the client, in the

same space as used for signing other document types. Functionality is

included to view the PDF in full screen, which includes navigation and

scaling functionality.

Internet Explorer 8 is not supported for PDF signing, as it does

not support the necessary HTML5 features to adequately display

PDF sign text. The NemID user interface will display an error

message to the user if the user’s browser does not support the

required HTML5 features. Even so, the Service Provider should

check and disallow users with incompatible browsers to start any

PDF signing flow.

http://www.w3.org/1999/XSL/Transform

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 30 of 89

Only a subset of the PDF specification is supported for signing. Refer to

section 5.4.2 PDF whitelisting. It is recommended that PDF documents

used for signing comply with the PDF/A standard.

The signing specif ic- and PDF-specific parameters are described in

section 3.1.

Note in particular that:

• The parameter CLIENTFLOW must be OCESSIGN2.

• If a remote PDF document is referenced using the SIGNTEXT_URI

parameter, there must always be a corresponding

SIGNTEXT_REMOTE_HASH parameter containing the Base64

encoded SHA256 hash of the remote PDF document.

• In order for the PDF signing and the view document functionality

to function, the <iframe> containing the NemID JavaScript client

must have the attribute allowfullscreen="true".

When PDF signing is specif ied, the PDF document is presented directly in

the NemID JavaScript client.

5.4.1 External PDF files and Cross-origin Resource

Sharing

Browsers limit the interaction between content loaded from different

sites, also known as the Same Origin Policy [SOP]. This feature

complicates the interaction between the NemID JavaScript client and

any external PDF content provided by the Service Provider. The NemID

JavaScript client will attempt to override the SOP by using Cross-origin

Resource Sharing [CORS] (or the XDomainRequest object for IE8 and

IE9 [XDRO]). Therefore, it is necessary to add the following HTTP

header to the http-response serving an external PDF intended for the

NemID JavaScript client (for NemID KOPI):

Access-Control-Allow-Origin: https://appletk.danid.dk

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 31 of 89

To further provide compatibility with IE9 and XDomainRequest a PDF f ile

must be base64 encoded. The Signtext_Remote_Hash parameter must

be calculated from the PDF f ile before base64 encoding is applied. Other

browsers not using XDomainRequest will be able to handle base64

encoded PDF as well.

Note: Do not rely on cookies being preserved in CORS requests, as this

will not perform reliably across all browsers and. Any unique session-

related information should be set as part of the value of the

SIGNTEXT_URI parameter.

Note: In order to ensure maximum browser compatibility, all external

PDF f iles must be served over HTTPS.

5.4.2 PDF whitelisting

For security reasons, and to ensure that a PDF document does not

change in either content or appearance, only a subset of the PDF

specif ication is supported. In other words, not all PDF documents may

be signed. A whitelist is used, which contain those elements from the

PDF specif ication, which are supported and hence allowed in a PDF

document.

To verify that a PDF document can be validated, a sign text validator

can be downloaded from the Service Provider web

site https://www.nets.eu/dk-da/kundeservice/nemid-tjenesteudbyder/NemID-

tjenesteudbyderpakken/Pages/vaerktoejer.aspx. The sign text validator will

validate a PDF document against the whitelist and can be installed

locally for testing. The sign text validator is intended to be used on a

document that is already known to be valid as a PDF document. The

sign text validator validates that a document contains only supported

PDF elements but does not check whether the PDF document strictly

conforms to the PDF specif ication or check whether documents will

render correctly in the user’s browser. The rendering of PDF documents

relies on the user’s web browser for display, so it is important to test all

supported browsers to verify that a PDF document will be shown

correctly. To test the rendering you can use the developer web site

(https://appletk.danid.dk/developers/signtextviewer.jsp) where you can test if the

document will be shown correctly to the user in a particular version of a

https://appletk.danid.dk/developers/signtextviewer.jsp

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 32 of 89

browser. You must be registered with Nets to use the developer site

(Information about becoming a NemID Service Provider is available

at https://www.nets.eu/dk-da/kundeservice/nemid-

tjenesteudbyder/Quick-guide-in-English).

If you intend to support code f iles for signing, be aware that rendering

of PDF documents is handled differently in this case. See the chapter

“Integration with the NemID CodeFile client” for more information.

Different tools generate PDF documents in very different ways. Adobe in

one way, Microsoft in another and so forth.

Generally only elements from the Adobe PDF specification are

supported. However, there are specific exceptions for the following

elements used by Microsoft Office, which are also supported:

• /Workbook

• /Textbox

• /Endnote

• /Worksheet

• /Macrosheet

• /Annotation

• /Dialogsheet

• /Chartsheet

• /Diagram

• /Footnote

• /Chart

• /Slide

• /InlineShape

• /Artifact

• /Figure

• /Formula

• /Link

Fonts in the PDF document should generally be embedded in the

document. However, the following fonts (or suitable substitute fonts

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 33 of 89

with the same metrics), are directly supported by all. It is therefore

normally not necessary to embed these so called “base 14 fonts”:

• Times-Roman

• Times-Bold

• Times-Italic

• Times-BoldItalic

• Helvetica

• Helvetica-Bold

• Helvetica-Oblique

• Helvetica-BoldOblique

• Courier

• Courier-Bold

• Courier-Oblique

• Courier-BoldOblique

• Symbol

• ZapfDingbats

The following are examples of PDF elements, which are not supported:

OpenAction

OpenAction can be used to do something when reader shows a page.

This could be jump to another page, open external documents, run

external programs or creating a popup. This could potential open up for

a security issue. Different viewers could also handle the command in

different ways and this means that the signed PDF document is not

presented in same way for both the signee and the sender.

EmbeddedFile / FileAttachment

The viewer used to view the PDF might not handle embedded f iles

correct and in a normal PDF embedded f iles are not needed. Embedded

fonts are allowed as they cannot do harm to user ’s computer.

Sound / Movie / Widget

Sounds are not used in a normal PDF, the same goes for Movies and

widgets. When the PDF is presented in the signing client, the PDF is

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 34 of 89

shown as text and images only and all the interactive widgets cannot be

displayed.

GoToR / GoTo E

GoToR allows a user to open another PDF and go to a specif ic location.

GoToE allows going to a destination inside an embedded f ile. All the

information needed for the signing should be in the PDF document.

SubmitForm / AcroForm

As the PDF document should be the same each time it is opened, forms

are not allowed.

The complete PDF whitelist is described in Appendix C PDF Whitelist.

6 Response handling

6.1 The structure of the response message

At the conclusion of a successful f low, an XMLDSig message is returned

to the Service Provider’s page using HTML5 postMessage API (see

section 3.3). Please refer to [XMLDsig] for the authoritative description

of the standard. The typically most interesting information is brief ly

described below:

<ds:KeyInfo> Contains the user’s certificate and the

complete chain of issuers’ certificates.
<ds:SignedInfo>

 <ds:Canonicalization Method>

 <ds:SignatureMethod>

 <ds:Reference>

 <ds:DigestMethod>

 <ds:DigestValue>

This is the element that is actually signed.

It contains a reference to, and a digest of

the <ds:Object> element having

Id=”ToBeSigned”.

<ds:Object … Id=”ToBeSigned”>

 <ds:SignatureProperties>

 <ds:SignatureProperty>

The <ds:Object> element is the element

referenced from within <ds:SignedInfo>.

Its <ds:SignatureProperty> element

contains an <openoces:Name> and

<openoces:Value> element pair. The

remainder of this table lists the possible

names.

<openoces:Name>

 RequestIssuer

The name of the Service Provider (As

displayed to the user in the NemIDs GUI)

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 35 of 89

</openoces:Name>

<openoces:Name>

 TimeStamp

</openoces:Name

The value of the TIMESTAMP parameter

from the request is returned to the Service

Provider.

<openoces:Name>

 action

</openoces:Name

The type of the f low that is documented by

this signature (“logon” or “sign”)

<openoces:Name>

 signtext

</openoces:Name

Signature only, the signtext itself, that has

been displayed to the user.

Please note that neither CPR nor CVR numbers are contained in the
XMLDSig message. However, the PID or RID number can be found in the
user’s certificate, and this can be used to look up the CPR or CVR

number by using the Service Provider Package (see chapter 10 NemID

Service Provider package):

SubjectDN: SERIALNUMBER=DANID:xxxxxxxxx

6.2 Verifying the user’s certificate

When the user has authenticated himself, his signature is packaged in

the XMLDSig message returned to the Service Provider’s page (see the

previous section). The Service Provider’s page would typically place the

XMLDSig document in a HTML form on the website, and then submit the

form to be processed by a back-end application. The XMLDSig document

must be extracted from the form submission on the web server, and

that is also where the signature in XMLDSig should be validated.

The Service Provider must then have the certificate validated and, where

applicable, must translate the PID/RID number to a CPR number. This

requires the Service Provider to run through the following steps in the

case of a logon. The list will be equivalent in the case of verifying a

signing:

1. Validate the signature on XMLDSig.

2. Extract the certif icate from XMLDSig.

3. Validate the certif icate and identify CA as OCES throughout the

whole certif icate chain to the root certificate.

4. Check that the certif icate has not expired.

5. Check that the certif icate has not been revoked.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 36 of 89

6. Extract the PID or RID from the certificate.

7. Match or translate the PID or RID to a CPR number (translation is

only available to select Service Providers).

The steps above will depend on whether you choose Nets DanID’s

security package/OOAPI for integration or whether you prefer to

adapt/extend the integration yourself.

Verification of the root certificate by telephone. The

Service Provider can verify whether a root certificate is

correct by calling +45 72 24 70 12. By comparing the

f ingerprint found in the root certif icate with the f ingerprint

read aloud on the telephone, the correctness of the root

certif icate can be confirmed.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 37 of 89

Figure 6-1 – Deployment diagram – Systems that communicate

during login.

Figure 6-1 depicts systems that can communicate in a login situation.

The possible protocols for the communication have been added in

parenthesis. After this the Service Provider can use the OOAPI delivered

by Nets DanID to perform step 1 to 7 in the before mentioned list. The

revocation check can be performed in two ways. Either a revocation list

(CRL) can be obtained from the CRL LDAP system, or a revocation check

can be performed against the OCSP system. The RID-CPR service can be

used to lookup a cpr-number given CVR-number and RID of an

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 38 of 89

employee. Accordingly, the PID-CPR service can be used to lookup a

cpr-number given a PID of an employee or it can be used to match a

PID against a cpr-number.

6.3 Logging

It is the responsibility of the Service Provider to store and provide the
information needed to prove the correctness of a signature or an
authentication at a later point of time, e.g. due to a dispute or fraud

case.

The Service Provider must store the signed document from each login or
signing operation. The user’s certificate (which includes the PID or the

RID), the time stamp etc. are included in signed documents. Service
Providers should also consider storing timestamp, client IP number, user

agent, and similar information.

NemID records authentication and signing operations in the user’s usage

log.

Note that Nets-DanID A/S does not store the signed documents.

6.4 Response codes

An error code is returned to the Service Provider, if a client operation

fails to complete successfully. The error code should be used to assist

the user in how to remedy the situation and accomplish what he set out

to do. The list of error codes is available in the separate document

NemID Error Codes, which is available as part of the Service Provider

documentation [SP-docs].

Read more about direct integration in section 7: Direct

integration with Nets DanID’s infrastructure.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 39 of 89

Service Providers are recommended to take Nets DanID’s Service

Provider package (see chapter 9. NemID Service Provider package) and

OOAPI as a starting point, when choosing a method of integration with

NemID. This module covers most integration options and will suff ice in

the vast majority of cases.

Those Service Providers who wish to develop their own interface to Nets

DanID’s infrastructure are referred to the following documents, which

are all part of the Service Provider package:

• Introduction to NemID and the Service Provider Package.

• Specif ication document for the PID-CPR service.

o A description of the PID-CPR service.

• Specif ication document for the RID-CPR service.

o A description of the RID-CPR service.

• The specif ication document for LDAP API.

o A description of how revocation lists can be obtained from

LDAP and things you need to be aware of.

• Specif ication document for OCSP

o A description of how to access the OCSP responder and

what the interface is like.

7 Direct integration with Nets DanID’s

infrastructure

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 40 of 89

8 Remember user id

The remember user-id functionality is optional and is by default not

enabled. To enable it one must pass the parameter named

REMEMBER_USERID to the client.

When a login or signing (1-or 2-factor) transaction is completed, a

Service Provider specific token that serves as a reference to the user-id

information stored server side, is returned in the XMLDSIG documents.

The Service Provider is responsible for storing the token (e.g. in a

cookie) and use it as input to the NemID JavaScript client in future

transactions.

Valid values for the REMEMBER_USERID parameter include the empty

string and a base64 encoded token returned in the XMLDSIG document

as mentioned. If the user has not remembered his userid previously the

empty string can be sent as parameter value. This will show the

remember user id checkbox option at the userid/password screen.

Please note that supplying an invalid token will have the same effect as

the empty string, i.e. no userid is pref illed but the remember userid

checkbox is shown at the userid/password screen.

8.1 Standard Mode

If the REMEMBER_USERID parameter is enabled and the user has

chosen to let the system remember the userid then the client will help

the user by only allowing digits as input. However, the GUI is the same

as if the user has a 4-digit password or an alphanumeric password.

Please see screenshot of Login screen in Figure 8-1 below:

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 41 of 89

Figure 8-1 – Login screen in Standard Mode (500*450)

8.2 Limited Mode

If the REMEMBER_USERID parameter is enabled and the user has

chosen to let the system remember the userid then the client will help

the user by only allowing digits as input. The GUI helps the user, by

showing 4 input boxes. There is no “Log på” button. This is not needed

because the system will automatically submit the page when the user

has inserted 4 digits. Please see screenshot of Login screen in Figure

8-2 below:

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 42 of 89

Figure 8-2 – Login screen in Limited Mode

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 43 of 89

Users can authenticate via the NemID Javascript client using various 2nd factors:

• Code card – A printed list of one-time codes

• Code token – An electronic device for providing one-time codes

• IVR – A voice service for providing one-time codes

• Code app – A 2nd factor confirmation app for mobile devices, providing the

one-time confirmation

NemID Javascript client supports all above without any effort needed by service

providers to support these. However, code app integration can be enhanced by

providing a textual context, see parameter TRANSACTION_CONTEXT, for presenting

the context to the user in the code app.

9 Code app settings

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 44 of 89

The purpose of NemID Service Provider package is to make it easy for

Service Providers to implement NemID on their websites.

10.1.1 The resources of the Service Provider package

The Service Provider package consists in addition to the documentation

package of the following components:

• ooapi-<version>-source.zip. Source code for OOAPI.

• ooapi-<version>.jar. Compiled version of OOAPI.

• ooapi-<version>-with-dependencies.jar. Compiled version of

OOAPI including the jar f iles upon which the OOAPI depends.

• ooapi.net-<version>.zip. .Net version of OOAPI.

• ooapi.net-<version>-source.zip. Source code for OOAPI in

.Net including an example of the implementation of NemID

(source version).

• Javadoc - ooapi og sikkerhedspakke-<version>.zip. Java

doc for OOAPI and Security Package.

10.1.2 LogonHandler

The LogonHandler class offers a method by which the logon data sent by

the client can be validated, while also having the PID returned for the

person who is logged on (RID if it is an employee signature).

A successful validation of logon data (i.e. a call that has not given rise to

any exceptions) ensures the following:

• that the signature contained in the logon data is valid.

• that the certif icate contained in the logon data is valid, i.e. that

the certif icate has not expired or been revoked. By checking the

returned status, you can see what state the certif icate is in.

10 NemID Service Provider package

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 45 of 89

Figure 10-1 – Sequencediagram – LogonServlet handles login.

Figure 10-1 shows how the LogonServlet from Tuexample-source.zip

uses the LogonHandler for validating a login. Furthermore, it shows how

the LogonHandler validates the signature, challenge, and logonto

parameters.

The LogonHandler parses the signature and extracts its certif icate chain.

The certif icate chain consists of the root CA certificate, the issuing CA

certif icate and f inally the user certificate. The certificate chain is verif ied

by verifying that the issuing CA certif icate has been used for signing the

user certif icate, and accordingly it is verif ied that the root CA certif icate

has been used to sign the certif icate of the issuing CA. The

LogonHandler then uses the PartitionedRevocationChecker class to

check if the user certif icate has been revoked. The

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 46 of 89

PartitionedRevocationChecker checks the user certificate to identify

which partial revocation list (CRL) the user certif icate belongs to. The

PartitionedRevocationChecker retrieves the correct revocation list from

the CRL LDAP system. If the user certificate is present in the revocation

list the certif icate has been revoked.

Figure 10-2 – Sequence diagram - CprMatchServlet performs a

successful match call

As part of the login procedure at a Service Provider the user can be

asked for his cpr-number. The Service Provider can then use the PID-

CPR service for validating that the cpr-number and PID (retrieved during

login) matches using a match call. Figure 10-2 depicts how the

CprMatchServlet class performs a match call using the

ServiceProviderClient class. The ServiceProviderClient is a webservice

client in OOAPI. It can be used for calling the PID-CPR service.

CprMathServlet uses the ServiceProviderSetup class for instantiating a

ServiceProviderClient. The ServiceProviderSetup can furthermore be

used to control which environment to execute in and to configure which

revocation checker to use. Three revocation checkers are available in

the OOAPI provided by Nets DanID:

• PartitionedCrlRevocationChecker – Retrieves the partial

revocation list from CRL LDAP to perform the revocation check.

:CprMatchServlet ServiceProviderSetup

createServiceProviderClient()

client:ServiceProviderClientImpl
create(webserviceURL)

client

match(cpr, pid, serviceProviderId, null)

PID-service

pid(pid, cpr, serviceProviderId, null)

PIDReply

[statuscode in reply == 0]
true

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 47 of 89

The certif icate holds information about which partial revocation

list it belongs to.

• FullCrlRevocationChecker – Retrieves the full revocation list

from CRL LDAP to perform the revocation check. The

FullCrlRevocationChecker caches the full revocation list. The

maximum duration of the revocation list in the cache can be

controlled by setting the “crl.cache.timeout.http” property in

the ooapi.properties f ile.

• OCSPCertificateRevocationChecker – Performs revocation check

by calling the OCSP system.

10.1.3 SignHandler

The SignHandler class offers a method of validating the output from the

client against a given agreement text. A successful validation of signing

data (i.e. a call which returns true) ensures that:

• The signature contained in the signing data is valid.

• The certif icate contained in the signing data is valid, i.e. that the

certif icate has not expired or been revoked. By checking the

returned status, you can see what state the certif icate is in.

10.1.4 Example of web application in Java

As an example of how the OOAPI is used, Nets DanID has developed a

simple web application for processing logon and signing using NemID.

The application is built upon three scenarios:

• NemID Private (scenario 1)

• NemID Business (scenario 2)

• NemID Private and Business (scenario 3)

Each of these scenarios contain examples of logon and signing with code

card and OCES code f ile.

The web application also contains a layout (interaction design) which

Nets DanID recommends for the incorporation of NemID logon and

signing.

Below, you will f ind a short introduction to the structure of the

application. For further information, refer to Javadoc and the source

code.

The minimum requirement to compile the application is to have

Maven version 2.1.1 installed.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 48 of 89

10.1.4.1 Structure of the application

The application is structured as follows:

tuexample

 src/main/java Java classes

 src/main/resources Other program resources
 src/main/webapp Web files

 resources Stylesheets and JavaScript

 variant1 Scenario for NemID Private

 variant2 Scenario for NemID Business
 variant3 Scenario for NemID Private and Business

 extras Misc. Setup and PID lookup

 WEB-INF/web.xml Configuration of web application

 *.jsp Web pages
 pom.xml Maven POM

The idea is that if you are only interested in scenario 2, you can ignore the contents of the
variant1 and variant3 folders.

10.1.4.2 Generation of Javadoc

To generate Javadoc, you must run the command:

mvn javadoc:javadoc

from the command line.

The generated Javadoc can be found in target/site/apidocs.

10.1.4.3 Execution using Jetty

To use Jetty to execute the application, you must run the command:

mvn jetty:run

from the command line.

Following this, the application can be found at

http://localhost:8082/tuexample.

10.1.4.4 Execution using Tomcat

To use a pre-installed Tomcat to execute the application, you must run

the command:

mvn install

from the command line.

The application is thus packaged as a war f ile.

Next, copy target/tuexample.war to <tomcat-dir>/webapps.

The application can now be found at http://localhost:8080/tuexample

(or another port, depending on how Tomcat has been configured).

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 49 of 89

10.1.4.5 Example of logon

In each of the folders variant1, variant2, and variant3, there is a sub-

folder called “restricted”. The contents of this folder can only be

accessed after a logon. If you attempt to access a page within this

without being logged on, the LogonFilter will direct you to the logon

page.

The redirection to the logon page is set up in web.xml in the following

way (for scenario 1):

<filter>

 <filter-name>variant1SecurityFilter</filter-name>

 <filter-

class>dk.certifikat.tuexample.variant1.LogonFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>variant1SecurityFilter</filter-name>

 <url-pattern>/variant1/restricted/*</url-pattern>

</filter-mapping>

The LogonFilter class itself is composed of AbstractLogonFilter (which is

common across the three scenarios) and a sub-class in each variant

package. AbstractLogonFilter takes care of the overall control with the

log-in check, while each sub-class takes care of redirecting to the

specif ic logon page. Also, each sub-class makes sure that the right kind

of certificate is used.

The logon page itself is composed of two tabs, e.g. for log-in with code

card or code f ile. By default, the user is directed to the tab for logon

with a code card, but on each page it is possible to set a cookie so that

the system remembers which tab is preferred. Therefore,

AbstractLogonFilter checks the cookie “preferredLogin” in order to decide

which tab the user should be redirected to.

No matter which logon method the user chooses, the NemID client will

send the result to the LogonServlet when the user clicks OK.

LogonServlet is set up in web.xml as follows (for scenario 1):

<servlet>

 <servlet-name>variant1LogonServlet</servlet-name>

 <servlet-

class>dk.certifikat.tuexample.variant1.LogonServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>variant1LogonServlet</servlet-name>

 <url-pattern>/variant1/logon.html</url-pattern>

</servlet-mapping>

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 50 of 89

As is the case with the LogonFilter class, LogonServlet is composed of

AbstractLogonServlet (which is common across all three scenarios) and

a sub-class in each variant package.

It is the responsibility of LogonServlet to check that the user has logged

in with a valid certif icate, and that the certif icate is of the expected type.

The LogonServlet servlet uses the Security Package’s LogonHandler to

validate the logon data and to extract a PID/RID number from the logon

data. When the LogonHandler class has returned a PID/RID number, this

is saved in the session:

@Override

protected void logon(HttpServletRequest req, HttpServletResponse

resp, CertificateAndStatus certificateAndStatus) throws IOException,

ServletException {

 HttpSession httpSession = req.getSession();

 if (isPoces(certificateAndStatus)) {

 String pid = ((PocesCertificate)

certificateAndStatus.getCertificate()).getPid();

 httpSession.setAttribute(KEY_PID, pid);

 httpSession.setAttribute(KEY_LOGGED_IN, Boolean.TRUE);

resp.sendRedirect(req.getContextPath()+"/variant1/restricted/kvitter

ing.jsp");

 } else {

 …

 }

}

This example of a web application is very simple. In a real web

application, it might be expected that the PID number, for example,

would be used to check whether the user with the given PID number has

access to the restricted area. The application would then be able to look

up the PID number in a local user table and display a text showing who

is logged on (e.g. “Joe Bloggs is logged on”).

The URL logout.html hits the LogoutServlet servlet, which logs out the

user and forwards him to the front page of the given scenario. The user

is logged out by removing the key from the HttpSession object that

specif ies that the user is logged in.

10.1.4.6 Example of signing

Signing consist, like logon, of several tabs. Here, you can sign with e.g.

code card or code f ile. Based on the “preferredLogin” cookie (see under

the example of logon), the relevant tab is shown to the user.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 51 of 89

The SignServlet servlet, which, like LogonFilter and LogonServlet,

consists of an AbstractSignServlet class and a scenario-specific sub-

class, receives the result from the given NemID client and validates that

the used certif icate is valid, that the certif icate is of the expected type,

and that the correct text has been signed. For the latter check, the

agreement text is placed as an attribute on the session.

SignServlet uses SignHandler to decide whether the signature data is

correct. Depending on the outcome, the user is redirected to either a

success page or an error page.

10.1.5 Example of web application in .NET

As an example of how OOAPI.NET is used, Nets DanID has developed a

simple web application for processing logon and signing using NemID.

The application is built upon three scenarios:

• NemID Private (scenario 1)

• NemID Business (scenario 2)

• NemID Private and Business (scenario 3)

Each of these scenarios contain examples of logon and signing with code

card and with an OCES code f ile.

The web application also contains a layout (interaction design) which

Nets DanID recommends for the incorporation of NemID logon and

signing.

Below, you will f ind a short introduction to the structure of the

application. For further information, refer to the documentation files and

the source code.

10.1.5.1

10.1.5.2 Structure of the application

The application is structured as follows:

tuexample.net

 include/ Files which are included in the HTML pages

For compiling the project, you need at least .NET 3.5.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 52 of 89

 variant1/ Scenario for NemID Private

 variant2/ Scenario for NemID Business

 variant3/ Scenario for NemID Private and Business

 Properties/ Contains assembly.cs

 resources/ js, css, and image files

 tuexample/ Generation of challenge and error handling

 *.aspx Webpages

 Web.config Web application configuration

10.1.5.3 Generation of documentation

For generating ndoc, please read the readme f ile:

Ooapi.net/Docs/README.txt

10.1.5.4 Execution in Visual Studio

For the execution in Visual Studio of tuexample.net, please consult the

readme file:

Ooapi.net/Docs/README.txt

10.1.5.5 Setup of the web application

Configuration of the demo application is stored within web.config f ile

appsSettings section and includes information for: NemID CodeFile client

iframe source url, OTP iframe source URL, NemID target environment

name (used to by org.openoces.ooapi.utils.Properties), location of a PFX

f ile containing VOCES certif icate, service provider IDs for RID/PID

services and application name. Note, that password for the PFX

certif icate stored in encrypted form within secureAppSettings section.

10.1.6 Validation of CPR numbers

10.1.6.1 OIO service

The CprMatchServlet class implements an example of how to validate

the link between the user’s certificate and CPR number in calls to the

PID/RID-CPR web service.

/* validates link between CPR number and PID number by calling the

PID.CPR web service */

private boolean validateCPR(String cpr, String pid) {

 if (cpr != null) {

 ServiceProviderClientImpl pidCprService =

ServiceProviderClientImpl.createForTestEnv();

 return pidCprService.match(cpr, pid, "44");

 } else {

 return false;

 }

}

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 53 of 89

Calls to this service require you to authenticate yourself to it, both by a

company certificate (VOCES) and by providing a Service Provider ID

(called a “SPID”).

The Service Provider ID (SPID) is the “44” indicated in the code above.

In addition, you are also required to configure a truststore in order to

establish the SSL connection to the service.

The configuration of these two is given in the pidclientsecurity.xml f ile,

where wsclientkeystore.jks corresponds to the company certificate and

wsclienttruststore.jks corresponds to the required truststore.

The company certificate (VOCES) is unique to each Service Provider,

while wsclienttruststore.jks is static.

10.1.6.2 Via WSDL

If you need other functionality from the PID service, you must

implement your own client and request access for the service methods

you need.

Method Input Output Description

getPidForCpr cpr

serviceProviderId

pidForCpr

created
statusCode

Will create new

PID for the given
CPR or return
existing PID.

findCprByPid cpr

serviceProviderId

pidForCpr

statusCode

Will return existing

PID or return
statusCode 2 if PID
does not exist.

Service status codes are as follows:

Status code Description

0 The method is called without error.

1 CPR number does not correspond to PID.

2 PID does not exist.

4 PID could not be found in the certif icate.

8 TU does not have access to perform CPR lookups.

16 TU has exceeded the limit for the number of calls per day.

17 TU does not have access to call the method.

4096 The request (input) is not valid for the PID service.

8192 The XML query cannot be parsed.

8193 The XML version is not supported.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 54 of 89

This chapter collects general advice and best-practice about securing a

Service Provider web site.

11.1 HTTP Headers

It is recommended that Service Providers look into the following HTTP

headers and evaluate each carefully regarding its usefulness for the

Service Providers application.

The "X-Frame-Options" enables a web page to control whether other

pages are allowed to include that web page in an <iframe>. Including the

target page in an <iframe> is a common approach for certain attacks and

should be disallowed, unless specifically needed.

https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options

http://tools.ietf.org/html/rfc7034

Specifying the "X-Content-Security-Policy" provides a way to

communicate content restrictions to the browser, e.g. that all scripts

must come from a specif ic source or that inline JavaScript should be

prohibited.

Setting an appropriate content security policy reduces the impact of

rogue content that is injected into a page by software installed on the

user’s PC.

http://www.html5rocks.com/en/tutorials/security/content-security-

policy/

http://www.w3.org/TR/CSP/

The "Strict-Transport-Security" header instructs the browser to only

access the domain using HTTPS. All unencrypted connections will be

redirected to the HTTPS version of the site.

11 Security Guidelines

https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options
http://tools.ietf.org/html/rfc7034
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.w3.org/TR/CSP/

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 55 of 89

The header can help against the so-called "downgrade attack", where a

man-in-the-middle attacker redirects a user to the unencrypted version

of a website in order to eavesdrop or tamper.

The header is obviously superfluous at web sites that are only accessible

through HTTPS.

https://developer.mozilla.org/en-

US/docs/Security/HTTP_Strict_Transport_Security

http://tools.ietf.org/html/rfc6797

The Open Web Application Security Project (OWASP) lists a few more

headers at

https://www.owasp.org/index.php/List_of_useful_HTTP_headers, which

should also be considered and evaluated.

12 Integration with the NemID CodeFile

client

NemID CodeFile client is used for authentication and signing operations

by customers who have OCES certificates stored locally as a code f ile on

a f ile system or on NemID hardware. Operations using code card (OTP)

are not possible with NemID CodeFile client.

NemID CodeFile client consists of:

• an iframe, which is responsible for embedding web UI. The page

can contain only one NemID CodeFile client iframe

• a native application, which is based on OpenSign APIs

• a browser plugin, which enables communication between iframe

and native application

NemID CodeFile client response format is XMLDsig. It is fully compatible

with the NemID JavaScript client response message format.

In order to instantiate NemID CodeFile client, the following code must

be included on service providers page:

• A script tag with id=codefile_parameters containing client

parameters in JSON format

https://developer.mozilla.org/en-US/docs/Security/HTTP_Strict_Transport_Security
https://developer.mozilla.org/en-US/docs/Security/HTTP_Strict_Transport_Security
http://tools.ietf.org/html/rfc6797
https://www.owasp.org/index.php/List_of_useful_HTTP_headers

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 56 of 89

• An iframe tag with id=codefile_iframe

• Java script for communication with the iframe using web

messaging.

• A form tag with id=signedForm for encapsulation of response

data from NemID CodeFile client to the service providers

response handler.

This is similar to integration with NemID JavaScript client, described

previously in the document.

All of the above can be generated with a help of CodeFileClientGenerator

class, available within TUExample demo application, which provides a

reference implementation for integration with both NemID CodeFile and

NemID JavaScript clients.

If the NemID native application is not available on end-user’s computer,

the NemID CodeFile client will guide the end user to installation or fall

back to the legacy OpenSign, applet based, implementation by

dynamically injecting necessary HTML for applet rendering.

12.1 Parameters

List of parameters accepted by the NemID CodeFile client. Parameter

names and values are case sensitive.

Name Madato

ry

Encodi

ng

Description

CLIENTFLOW Y None Flow type. Values: login, sign

SP_CERT Y Base64 Service provider VOCES certificate

issued by Nets-DanID certificate

authority in DER format.

TIMESTAMP Y Base64 Current time when generating

parameters. The timestamp must be

supplied as the number of milliseconds

since 1970-01-01 00:00:00 or as a

formatted string. Examples:

2013-12-17 13:33:47+0100

1395819294069

ADDITIONAL_PARAM

S

N Base64 Supplementary parameters.

Semicolon (;) separated key value

pairs

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 57 of 89

REQUESTISSUER Y Base64 The service provider "Friendly Name"

presented to users in logon f lows.

LANGUAGE N None Language. Values: da (default), en.

ORIGIN Y Base64 URL of the service provider domain.

Format: https://<hostname>:<port>

The <port> part must only be defined,

if the service provider service is not

using standard port-number.

PARAMS_DIGEST Y Base64 SHA-256 digest of the normalized

parameters.

DIGEST_SIGNATURE Y Base64 RSA signature of the calculated

parameter digest.

SIGN_PROPERTIES N None XMLDSIG properties to be included in

signed response. One or more

name=value pairs separated by

semicolons (;). Used for transporting

challenge.

SIGNTEXT Y* Base64 Value of the text to be signed

SIGNTEXT_FORMAT Y* Base64 Format of the text. Values:text, html,

xml, pdf

SIGNTEXT_TRANSFO

RMATION

N* Base64 XSLT f ile. Required when

SIGNTEXT_FORMAT=xml

*) – relevant for signing f low only

ADDITIONAL_PARAMS parameter is a container for supplementary parameters:

• subjectdnfilter parameter. It is used to f ilter certificates made available to

the end user for a logon/signing. Provides ability to f ilter certificates based

on their subject name. To show only POCES certificates, the f ilter should be

set to UElEOg== (base64 representation of “PID:”), only MOCES –

UklEOg== (base64 representation of “RID:”). Filter should be left blank if no

f iltering is required (default).

• issuerdnfilter parameter. It is used to f ilter certif icates made available to the

end user for a logon/signing. Provides ability to f ilter certificates based on a

certif icate issuer name. By default, only certificates issued by OCES CAs

(both test & production) will be made available for the end user, while

certif icates issued by any other (non OCES) CAs will be excluded from the

list. Examples:

Value Meaning

VFJVU1QyNDA4IFN5c3RlbXRlc3Q= Base64 value corresponding to

"TRUST2408 Systemtest". Only

certif icates issued by OCES test

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 58 of 89

CAs will be included.

VFJVU1QyNDA4IE9DRVM= Base64 value corresponding to

"TRUST2408 OCES". Only

certif icates issued by OCES

productions CAs will be included.

VFJVU1QyNDA4 Base64 value corresponding to

"TRUST2408". Only certif icates

issued by OCES CAs (production &

test) will be included. The default.

• signtext.uri, signtext.uri.hash.value parameters. Used when signing a PDF

with OpenSign Applet.

• attachments parameter. Used when signing with OpenSign Applet. Enables

attachment of secondary documents to the main one.

12.2 Logs

There are three types of CodeFile logs.

12.2.1 CodeFile native application logs

Location: <USER-HOME>/.oces/

Logs are outputted to nos.log f ile. Create an empty f ile called nos.debug

in the same directory to activate verbose logging.

12.2.2 CodeFile Internet Explorer extension logs

Location: <LOCALAPPDATA>/Temp/Low/ (<LOCALAPPDATA> usually

resolves to <USER-HOME>/AppData/Local)

Logs are outputted to NemidNoeglefilsprogram.log f ile. Create an empty

f ile called NemidNoeglefilsprogram.allowdebug.txt within the same

directory to activate verbose logging. Verbose logs are written to a

different f ile called NemidNoeglefilsprogram.debug.log.

12.2.3 CodeFile Chrome extension, Firefox extension and

iframe logs

Location: browser console.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 59 of 89

This chapter provides an overview of the standards that are used in the

rest of the document, and thus functions as a list of prerequisites for

adopting DanID. Appendix A contains further references to the

standards.

13.1 XMLDSig

XMLDSig (XML Signature Syntax and Processing) is used by SAML to

create and verify signatures embedded in messages.

The XMLDSig standard has been augmented by XMLEnc and RFC 4051.

Both expand on the list of algorithms that an XMLDSig implementation

should support. Most importantly, RFC 4051 adds the option of using

SHA-256 and SHA-512 when signing.

13.1.1 Migration to MitID

This section is only of interest if working with SUN on behalf of banks or DIGST. Otherwise

ignore.

In connection with migration to MitID (with IBSS 5.6.6), XMLDSig can

contain an additional parameter, if it has been enabled.

Name Description

identityAssuranceLevel identityAssuranceLevel indicates whether the

private eID meets the requirements to a

specif ied identification level as determined by

NSIS. Possible values: 1, 2.

1 indicates that the identity assurance level
cannot be determined, and therefore cannot be

translated to an NSIS level.

2 indicates that the identity meets the

requirements of NSIS level Substantial

13 Standards and algorithms

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 60 of 89

13.2 XMLEnc

XMLEnc expands on XMLDSig to add support for encrypted elements,

cipher data and various key transport and identif ication methods.

Among the algorithms that XMLEnc adds are SHA-256 and SHA-512.

13.3 Cryptographic algorithms

The following lists the cryptographic algorithms used during the

authentication and signing f lows

Digests SHA-256

Signatures RSA with 2048 bit keys

Encrypted assertion AES 256 in CBC mode with ISO10126 padding

Transport key encryption RSA PKCS1

ISO 10126 padding uses the last byte of the decrypted cipher text to

indicate the length of the padding block. The remaining bytes in the

padding block are random. The resulting byte array should be trimmed

accordingly upon decryption.

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 61 of 89

A. References

[CORS]

[Config-

doc]

Cross-origin Resource Sharing
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Configuration and Setup, v. 1.16

http://www.nets.eu/dk-da/Service/kundeservice/nemid-tu/NemID-
tjenesteudbyderpakken-okt-
2014/Documents/Configuration%20and%20setup.pdf

[JSON] JavaScript Object Notation
http://www.ietf.org/rfc/rfc4627.txt
http://www.json.org/

[PKCS1] PKCS #1: RSA Cryptography Specifications 2.0

http://tools.ietf.org/html/rfc2437#page-13

[RFC 4051] Additional XML Security Uniform Resource Identifiers (URIs)
http://www.ietf.org/rfc/rfc4051.txt

[SOP] Same Origin Policy
http://en.wikipedia.org/wiki/Same_origin_policy

[SP-docs] Service Provider documentation package
English: http://nets.eu/sp-package

Danish: http://nets.eu/tu-pakke

[Web
Messaging]

HTML5 Web Messaging
http://www.w3.org/TR/webmessaging/

[XDRO] XDomainRequest object
http://msdn.microsoft.com/en-us/library/ie/cc288060(v=vs.85).aspx

http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-
restrictions-limitations-and-workarounds.aspx

[XMLENC] XML Encryption Syntax and Processing
http://www.w3.org/TR/xmlenc-core/

[XMLDSIG] XML Signature Syntax and Processing (Second Edition)
http://www.w3.org/TR/xmldsig-core/

[Mobile-
doc]

[Mobile-
code]

[LSS]

“NemID JavaScript client Integration for Mobile Applications”
Can be found under “Dokumentation” in [SP-docs]

SP example for iOS and Android
Can be found under “Kildekode” in [SP-docs]

https://www.lss-for-nemid.dk/

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.nets.eu/dk-da/Service/kundeservice/nemid-tu/NemID-tjenesteudbyderpakken-okt-2014/Documents/Configuration%20and%20setup.pdf
http://www.nets.eu/dk-da/Service/kundeservice/nemid-tu/NemID-tjenesteudbyderpakken-okt-2014/Documents/Configuration%20and%20setup.pdf
http://www.nets.eu/dk-da/Service/kundeservice/nemid-tu/NemID-tjenesteudbyderpakken-okt-2014/Documents/Configuration%20and%20setup.pdf
http://www.ietf.org/rfc/rfc4627.txt
http://www.json.org/
http://tools.ietf.org/html/rfc2437#page-13
http://www.ietf.org/rfc/rfc4051.txt
http://en.wikipedia.org/wiki/Same_origin_policy
http://nets.eu/sp-package
http://nets.eu/tu-pakke
http://www.w3.org/TR/webmessaging/
http://msdn.microsoft.com/en-us/library/ie/cc288060(v=vs.85).aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 62 of 89

B. Deprecated or renamed parameters

The following table contains a list of parameters that have been

removed or renamed.

ALWAYS_EMBEDDED

APPLETLOG_ENABLED

attachments

DANID

EXTRA_FILE_NAME_PARAM

locale

ocesprovider

opensign.alerturi

opensign.canceluri

opensign.cookiecount

opensign.cookie#name

opensign.cookie#value

opensign.doappletrequest

opensign.doappletrequestonmac

opensign.erroruri

opensign.formdata.count

opensign.formdata#name

opensign.formdate#value

opensign.message.name

opensign.result.name

opensign.verifieddokuri

opensign.verifieruri

Paramsdigest

replaced by PARAMS_DIGEST

requestIssuerId

setFocusAfterAppletFunction

setFocusBeforeAppletFunction

ServerUrlPrefix

Signeddigest
replaced by DIGEST_SIGNATURE

Signproperties

replaced by SIGN_PROPERTIES

signText.chunk

sso

TWO_FACTOR
replaced by CLIENTFLOW

USESHA1
SHA256 is the only supported hash algorithm for the NemID JavaScript Client

windowDecorated

ZIP_BASE_URL

ZIP_FILE_ALIAS
replaced by CLIENTFLOW

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 63 of 89

The following is the complete PDF whitelist:

PDF Types:

/FontDescriptor

/Font

/Metadata

PDF keys:

/Encoding

/ExtGState

/ColorSpace

/Pattern

/Shading

/XObject

/ProcSet

/Properties

/BaseFont

/Name

/Dests

/Dest

/Info

/Font

/Differences

PDF names:

/1.1

/1.2

/1.3

/1.4

/1.5

/1.6

/1.7

/2.2

/83pv-RKSJ-H

/90ms-RKSJ-H

C. PDF Whitelist

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 64 of 89

/90ms-RKSJ-V

/90msp-RKSJ-H

/90msp-RKSJ-V

/90pv-RKSJ-H

/A

/A85

/AC

/ADBE

/AESV2

/AHx

/AIS

/AN

/AP

/AS

/ASCII85Decode

/ASCIIHexDecode

/AbsoluteColorimetric

/Accepted

/AccurateScreens

/Action

/ActualText

/Add-RKSJ-H

/Add-RKSJ-V

/AddRevInfo

/Adobe.PPKLite

/After

/All

/AllOff

/AllOn

/AllPages

/Alpha

/AlphaNum

/Alphabetic

/Alt

/Alternate

/AlternateImages

/AlternatePresentations

/Alternates

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 65 of 89

/Angle

/Annot

/AnnotStates

/Annotations

/Annots

/AntiAlias

/AnyOff

/AnyOn

/App

/AppDefault

/Approced

/Art

/ArtBox

/AsIs

/Ascent

/Attached

/Attestation

/AuthEvent

/Author

/Auto

/AvgWidth

/B

/B5pc-H

/B5pc-V

/BBox

/BC

/BE

/BG

/BG-EUC-H

/BG-EUC-V

/BG2

/BM

/BS

/Background

/BackgroundColor

/BarcodePlaintext

/BaseEncoding

/BaseFont

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 66 of 89

/BaseState

/BaseVersion

/BaselineShift

/Bead

/Before

/BibEntry

/BitsPerComponent

/BitsPerCoordinate

/BitsPerFlag

/BitsPerSample

/Black

/BlackPoint

/BlackIs1

/BleedBox

/Block

/BlockAlign

/BlockQuote

/Blue

/Border

/BorderColor

/BorderStyle

/BorderThickness

/Both

/Bounds

/BoxColorInfo

/ByteRange

/C

/C0

/C1

/CA

/CCF

/CCITTFaxDecode

/CF

/CFM

/CICI.SignIt

/CIDFontType0

/CIDFontType0C

/CIDFontType2

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 67 of 89

/CIDInit

/CIDSet

/CIDSystemInfo

/CIDToGIDMap

/CMap

/CMapName

/CMapType

/CNS-EUC-H

/CNS-EUR-V

/CO

/CP

/CS

/CYX

/CalGray

/CalRGB

/Cancelled

/Cap

/CapHeight

/Caption

/Caret

/Catalog

/Center

/CenterWindow

/Cert

/Changes

/CharProcs

/CharSet

/Circle

/ClassMap

/Code

/ColSpan

/Collection

/CollectionField

/CollectionItem

/CollectionSort

/CollectionSubItem

/Color

/ColorBurn

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 68 of 89

/ColorDodge

/ColorSpace

/ColorTransform

/Colorants

/Colors

/Column

/ColumnCount

/ColumnGap

/ColumnWidth

/Columns

/Comment

/Completed

/Components

/Confidential

/Configs

/ContactInfo

/Content

/Contents

/Coords

/Copy

/CosineDot

/Count

/Courier

/Courier-Bold

/Courier-BoldOblique

/Courier-Oblique

/Create

/CreationDate

/Creator

/CreatorInfo

/CropBox

/Cross

/Crypt

/CryptFilter

/CryptFilterDecodeParms

/Cyan

/D

/DA

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 69 of 89

/DCTDecode

/DL

/DTC

/DW

/DW2

/DamagedRowsBeforeError

/Darken

/Dashed

/Data

/Date

/Decimal

/Decode

/DecodeParams

/DecodeParms

/Default

/DefaultForPrinting

/Delete

/Departmental

/Desc

/DescendantFonts

/Descent

/Design

/Dest

/DestOutputProfile

/Dests

/DevDepGS_BG

/DevDepGS_FL

/DevDepGS_HT

/DevDepGS_OP

/DevDepGS_TR

/DevDepGS_UCR

/DeveloperExtensions

/DeviceCMY

/DeviceCMYK

/DeviceColorant

/DeviceGray

/DeviceN

/DeviceRGB

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 70 of 89

/DeviceRGBK

/Diamond

/Difference

/Differences

/DigestLocation

/DigestMethod

/DigestValue

/Dingbats

/DingbatsRot

/Direction

/Disc

/DisplayDocTitle

/Distribute

/Div

/DocMDP

/DocOpen

/Document

/Domain

/DotGain

/Dotted

/Double

/DoubleDot

/Draft

/Duplex

/DuplexFlipLongEdge

/DuplexFlipShortEdge

/E

/EF

/EFF

/EFOpen

/ETen-B5-H

/ETen-B5-V

/ETenms-B5-H

/ETenms-B5-V

/EUC-H

/EUC-V

/EarlyChange

/Ellipse

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 71 of 89

/EllipseA

/EllipseB

/EllipseC

/Encode

/EncodedByteAlign

/Encoding

/Encrypt

/EncryptMetadata

/End

/EndIndent

/EndOfBlock

/EndOfLine

/EntcryptMetaData

/Entrust.PPKEF

/ExData

/Exclude

/Exclusion

/Experimental

/Expired

/Export

/ExportState

/Ext-RKSJ-H

/Ext-RKSJ-V

/ExtGState

/Extend

/Extends

/ExtensionLevel

/Extensions

/ExternalOPIdicts

/ExternalRefXobjects

/ExternalStreams

/F

/F9+0

/FD

/FG

/FL

/False

/Ff

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 72 of 89

/FieldMDP

/Fields

/FillIn

/Filter

/Final

/First

/FirstChar

/FirstPage

/Fit

/FitB

/FitBH

/FitBV

/FitH

/FitR

/FitV

/FitWindow

/FixedPrint

/Fl

/Flags

/FlatDecode

/FlateDecode

/Font

/FontBBox

/FontDescriptor

/FontFamily

/FontFauxing

/FontFile

/FontFile2

/FontFile3

/FontMatrix

/FontName

/FontStretch

/FontWeight

/Footer

/ForComment

/ForPublicRelease

/Form

/FormEx

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 73 of 89

/FormType

/FreeText

/Frequency

/FullSave

/FullScreen

/Function

/FunctionType

/Functions

/G

/GBK-EUC-H

/GBK-EUC-V

/GBK2K-H

/GBK2K-V

/GBKp-EUC-H

/GBpc-EUC-H

/GBpc-EUC-V

/GTS_PDFA1

/GTS_PDFX

/Gamma

/Generic

/GenericRot

/GlyphOrientationVertical

/GoTo

/GoToRemoveActions

/Gray

/Green

/Groove

/Group

/H

/H1

/H2

/H3

/H4

/H5

/H6

/HF

/HKana

/HKanaRot

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 74 of 89

/HKscs-B5-H

/HKscs-B5-V

/HRoman

/HRomanRot

/HT

/Halftone

/HalftoneName

/HalftoneType

/Hanzi

/HardLight

/Header

/Headers

/Height

/Height2

/Help

/Helvetica

/Helvetica-Bold

/Helvetica-BoldOblique

/Helvetica-Oblique

/Hidden

/HideAnnotationActions

/HideMenubar

/HideToolbar

/HideWindowsUI

/Highlight

/HojoKanji

/Hue

/I

/IC

/ICCBased

/ID

/IDS

/IDTree

/IF

/IRT

/IT

/IX

/Identify

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 75 of 89

/Identify-H

/Identify-V

/Image

/ImageB

/ImageC

/ImageI

/ImageMask

/Import

/Include

/Ind

/Index

/Indexed

/Info

/Ink

/InkList

/Inline

/InlineAlign

/Insert

/Inset

/Intent

/InterPolate

/Interpolate

/InvertedDouble

/InvertedDoubleDot

/InvertedEllipseA

/InvertedEllipseC

/InvertedSimpleDot

/Invisible

/Issuer

/ItalicAngle

/JBIG2Decode

/JBIG2Globals

/JPXDecode

/JavaScriptActions

/Justify

/K

/KSC-EUC-H

/KSC-EUC-V

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 76 of 89

/KSCms-UHC-H

/KSCms-UHC-HW-H

/KSCms-UHC-HW-V

/KSCms-UHC-V

/KSCpc-EUC-H

/Kana

/Kanji

/Key

/KeyUsage

/Keywords

/Kids

/L

/L2R

/LBody

/LC

/LE

/LI

/LJ

/LL

/LLE

/LLO

/LW

/LZWDecode

/Lab

/Lang

/Language

/Last

/LastChar

/LastModified

/LastPage

/LaunchActions

/Layout

/Lbl

/Leading

/Legal

/LegalAttestation

/Length

/Length1

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 77 of 89

/Length2

/Length3

/Level1

/Lighten

/Limits

/Line

/LineHeight

/LineThrough

/LineX

/LineY

/Linearized

/ListMode

/ListNumbering

/Location

/Lock

/Locked

/LockedContent

/LowerAlpha

/LowerRoman

/LrTb

/Luminosity

/M

/MCID

/MCR

/MDP

/MK

/ML

/MMType1

/MN

/MacExpertEncoding

/MacRomanEncoding

/Magenta

/MarkInfo

/MarkStyle

/Marked

/Mask

/Matrix

/Matte

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 78 of 89

/MaxWidth

/Maxtrix

/Measure

/MediaBox

/Metadata

/Middle

/MissingWidth

/MixingHints

/ModDate

/Modify

/MovieActions

/Msg

/Multiply

/N

/NChannel

/NM

/Name

/Named

/Names

/NeedsRendering

/NewParagraph

/Next

/NextPage

/NoRotate

/NoView

/NoZoom

/NonEFontNoWarn

/NonEmbeddedFonts

/NonFullScreenPageMode

/NonStruct

/None

/Normal

/NotApproced

/NotForPublicRelease

/Note

/NumCopies

/NumberFormat

/Nums

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 79 of 89

/O

/OBJR

/OC

/OCG

/OCGs

/OCMD

/OCProperties

/OFF

/OID

/ON

/OP

/OPI

/OPM

/OS

/Obj

/ObjStm

/OneColumn

/Online

/Open

/OpenType

/OptionalContent

/Order

/Ordering

/Org

/Outlines

/OutputCondition

/OutputConditionIdentifier

/OutputIntent

/OutputIntents

/Outset

/Overlay

/Overline

/P

/PCM

/PDF

/PS

/PZ

/Padding

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 80 of 89

/Page

/PageElement

/PageLabel

/PageLabels

/PageLayout

/PageMode

/Pages

/Pagination

/PaintType

/Paragraph

/Parent

/ParentTree

/ParentTreeNextKey

/Part

/Pattern

/PatternType

/Perceptual

/Perms

/Pg

/PickTrayByPDFSize

/PieceInfo

/Placement

/PolyLine

/PolyLineDimension

/Polygon

/PolygonCloud

/PolygonDimension

/Popup

/PreRelease

/Predictor

/Preferred

/PresSteps

/PreserveRB

/Prev

/PrevPage

/Preview

/Print

/PrintArea

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 81 of 89

/PrintClip

/PrintPageRange

/PrintScaling

/PrinterMark

/PrintersMarks

/PrintingOrder

/Private

/ProcSet

/Process

/Producer

/Prop_AuthTime

/Prop_AuthType

/Prop_Build

/Properties

/Proportional

/ProportionalRot

/PubSec

/Q

/QuadPoints

/Quote

/R

/R2L

/RBGroups

/RC

/RD

/REx

/RI

/RIPEMD160

/RL

/RT

/Range

/ReadOnly

/Reason

/Reasons

/Receipients

/Rect

/Red

/Redition

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 82 of 89

/Ref

/Reference

/Registry

/RegistryName

/Rejected

/RelativeColorimetric

/Rendition

/Renditions

/Requirements

/Resources

/Rhombold

/Ridge

/RlTb

/Role

/RoleMap

/Root

/Rotate

/Round

/Row

/RowSpan

/Rows

/Ruby

/RubyAlign

/RubyPosition

/RunLengthDecode

/S

/SA

/SE

/SHA1

/SHA256

/SHA384

/SHA512

/SM

/SMask

/SMaskInData

/SS

/SV

/SVCert

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 83 of 89

/Saturation

/Schema

/Scope

/Screen

/Sect

/Separation

/SeparationColorNames

/SeparationInfo

/SetOCGState

/Shading

/ShadingType

/Sig

/SigFieldLock

/SigQ

/SigRef

/Signature

/SimpleDot

/Simplex

/SinglePage

/Size

/SoftLight

/Sold

/Solid

/Solidities

/Sort

/SoundActions

/SpaceAfter

/SpaceBefore

/Span

/SpawnTemplate

/SpotFunction

/Square

/Squiggly

/St

/Stamp

/Standard

/Start

/StartIndent

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 84 of 89

/State

/StemH

/StemV

/Stm

/StmF

/StmOwn

/StrF

/StrikeOut

/StructElem

/StructParent

/StructParents

/StructTreeRoot

/Style

/SubFilter

/SubType

/Subj

/Subject

/SubjectDN

/SubmitStandalone

/Subtype

/Summary

/SummaryView

/Supplement

/Suspects

/Sy

/Symbol

/T

/TBody

/TBorderStyle

/TD

/TFoot

/TH

/THead

/TK

/TOC

/TOCI

/TP

/TPadding

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 85 of 89

/TR

/TR2

/Table

/Tabs

/TbRl

/TemplateInstantianted

/Templates

/Text

/TextAlign

/TextDecorationColor

/TextDecorationThickness

/TextDecorationType

/TextIndent

/Thread

/Threads

/Thumb

/TilingType

/TimeStamp

/Times-Bold

/Times-BoldItalic

/Times-Italic

/Times-Roman

/Title

/ToUnicode

/Toggle

/ToggleNoView

/Top

/TopSecret

/Trans

/TransferFunction

/TransformMethod

/TransformParams

/Transparency

/TrapNet

/TrapRegions

/TrapStyles

/Trapped

/Trapping

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 86 of 89

/TrimBox

/True

/TrueType

/TrueTypeFonts

/TrustedMode

/Ttl

/TwoColumnLeft

/TwoColumnRight

/TwoPageLeft

/TwoPageRight

/Type

/Type0

/Type1

/Type1C

/Type3

/U

/UCR

/UCR2

/UR

/UR3

/URIActions

/Unchanged

/Underline

/UniCNS-UCS2-H

/UniCNS-UCS2-V

/UniCNS-UTF16-H

/UniCNS-UTF16-V

/UniGB-UCS2-H

/UniGB-UCS2-V

/UniGB-UTF16-H

/UniGB-UTF16-V

/UniJIS-UCS2-H

/UniJIS-UCS2-HW-H

/UniJIS-UCS2-HW-V

/UniJIS-UCS2-V

/UniJIS-UTF16-H

/UniJIS-UTF16-V

/UniKS-UCS2-H

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 87 of 89

/UniKS-UCS2-V

/UniKS-UTF16-H

/UniKS-UTF16-V

/Unknown

/Unmarked

/UpperAlpha

/UpperRoman

/Usage

/UseAttachments

/UseCMap

/UseNone

/UseOC

/UseOutlines

/UseThumbs

/User

/UserProperties

/UserUnit

/V

/V2

/VE

/VP

/VeriSign.PPKVS

/Version

/Vertices

/VerticesPerRow

/View

/ViewArea

/ViewClip

/ViewState

/ViewerPreferences

/Viewport

/VisiblePages

/W

/W2

/WMode

/Warichu

/Watermark

/WhitePoint

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 88 of 89

/Width

/Width2

/Widths

/WinAnsiEncoding

/WritingMode

/X

/XFAResources

/XHeight

/XML

/XObject

/XRef

/XRefStm

/XStep

/XYZ

/Xsquare

/Y

/YStep

/Yellow

/Ysquare

/ZapfDingbats

/Zoom

/adbe.pkcs7.detached

/adbe.pkcs7.sha1

/adbe.x509.rsa_sha1

/ca

/cb

/checked

/max

/min

/neutral

/null

/off

/on

/op

/pb

/rb

/tv

IMPLEMENTATION GUIDELINES FOR NEMID (OCES), VERSION 5.7.5

Side 89 of 89

Microsoft Office elements:

/Workbook

/Textbox

/Endnote

/Worksheet

/Macrosheet

/Annotation

/Dialogsheet

/Chartsheet

/Diagram

/Footnote

/Chart

/Slide

/InlineShape

/Artifact

/Figure

/Formula

