

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 1 of 32

Nets Denmark A/S
Lautrupbjerg 10

P.O. 500

DK-2750 Ballerup

T +45 44 68 44 68

F +45 44 86 09 30

www.nets.eu

CVR-nr. 20016175

NemID JavaScript Client Integration for Mobile
Applications

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 2 of 32

Document History

Version Date Edited by Change/Reasons for Change/Comments

1.0 24-04-2016 PCKOC First public version of document.

1.1 17-05-2016 PCKOC Minor changes. Removing use of clientmode parameter,

now only URL is used to decide clientmode, clientmode

parameter is ignored. Text on SP test backend bug

removed.

1.2 13-01-2017 DBKRA Fix typos and link errors in SP-documentation for

MobilApp

1.3 13-10-2017 JONCH Adding a section on integrating App Switch. Also updated

the section on Advanced Parameters.

1.4 26-10-2017 STSOR Adding workaround for problem with entering into

username field, using UIWebView on iOS.

1.5 06-03-2019 PCKOC Introduced additions of Security best practice

recommendations and explanations of the use of this in

the app examples.

Removed description for Windows Phone, as this is no

longer supported.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 3 of 32

Content

Document History ..2

Content ..3

1 Introduction ..5

1.1 Document Scope .. 5

2 NemID JS Client integration into Mobile Applications..5

2.1 Parameter Generation ... 7

2.2 Response Handling .. 7

2.3 Iframe Integration and Running the Client ... 8

2.3.1 Limited Mode and Client Size ... 8

2.4 Integration of Remember User ID ... 10

2.5 Integration of App Switch .. 11

3 Android and iOS Source Example Packages ...11

3.1 General Functionality of the Example Apps ... 11

3.1.1 Supported Flows ... 11

3.1.2 Functionality Overview .. 12

3.1.3 MainView Options and App/Backend functionality ... 14

 Advanced Parameters ... 16

3.1.4 General App Limitations .. 16

3.1.5 Communication with test SP backend .. 17

3.1.6 Security .. 18

3.2 Android App Example .. 19

3.2.1 Getting up and running with the app example .. 19

3.2.2 Code Structure and Implementation overview .. 20

3.2.3 Webview HTML ... 21

3.2.4 Remember User ID ... 21

3.2.5 External Link Handling .. 21

3.2.6 Handling Long Click .. 21

3.2.7 Printing ... 21

3.2.8 Keyboard Handling ... 22

3.2.9 Logging ... 23

3.2.10 Cookies, Local Storage and Caching .. 23

3.2.11 Limitations on Android .. 23

3.2.12 Security .. 23

3.3 iOS App Example .. 25

3.3.1 Getting up and running with the app example .. 25

3.3.2 Code Structure and Implementation overview .. 25

3.3.3 Webview HTML ... 26

3.3.4 Web views ... 26

3.3.5 Remember User ID ... 27

3.3.6 Client presentation on iOS ... 27

3.3.7 External link handling .. 27

3.3.8 Handling long press .. 27

3.3.9 Printing ... 27

3.3.10 Cookies, Local Storage and Caching .. 28

3.3.11 Limitations on iOS .. 28

3.3.12 Security .. 29

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 4 of 32

References ...32

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 5 of 32

1 Introduction

In this document it is explained how to integrate the NemID JavaScript (JS) Client into a mobile app on

the platforms iOS and Android. The documentation contains:

- Implementation guides

- Documentation of code example packages for iOS and Android

Initially a general explanation details the flow of events involved when NemID JS Client is integrated in an

app, and therefore gives an overview of the implementation task that the service provider is faced with

when integrating NemID JS Client into a mobile app. Furthermore, functionality which is general for all

three platforms is detailed here. Following this, the contents of the code example packages are described,

with this is included a short guide explaining how to get up and running with the two example apps

(iOS/Android) that are associated with this document ([Mobile-source]). Functionality of the apps is then

described and explained, and platform specific pointers are given.

1.1 Document Scope

This document serves as support for developers and architects, who wish to integrate the NemID JS client

in to a mobile application (either iOS or Android). As such the focus is on the integration of the NemID JS

Client and the functionality related to this in a mobile app context, and not to the same extent on the

general functionality of the NemID JS client itself. For this reason, and to implement the NemID JS Client,

the reader should be familiar with how the NemID JS client works in general. The documents

“Implementation Guidelines for NemID (BANKS)” ([Integration-Bank]) and “Implementation Guidelines

for NemID (OCES)” ([Integration-OCES]) describe the integration of the NemID JS Client for browser

applications for Banks and OCES service providers (non-bank service providers) respectively.

2 NemID JS Client integration into Mobile Applications

This section gives an overview of how NemID JS Client should be integrated in a mobile application. Figure

1 in this document is closely related to the flow diagram in the Client Integration section of [Integration-

Bank] and [Integration-OCES] (describing the NemID JS Client integration flow in general), and

describes the overall flow in the case where NemID JS Client is integrated in a mobile application.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 6 of 32

Dashed lines signify functionality that the Service Provider should not worry about. Bold text is something

which is different from the desktop integration of the JS client.

The NemID JS Client can be initialized and utilized as follows in a mobile application:

1. Upon request from the user of the mobile application the NemID JS Client is initiated

2. In order to start up the NemID JS client, signed parameters are required. These must be

generated and signed on the service providers own backend (SP backend), and retrieved via a TLS

Figure 1 NemID JS Client flow when integrated in a mobile application. Bold faced text marks elements that are different

from the standard integration of NemID JS Client in [Integration-Banks]/[Integration-OCES]. Functionality encased in

dashed boxes signifies functionality, which comes with the NemID JS client, and needs no implementation actions from the

service provider.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 7 of 32

connection.

3. Upon retrieval of the signed parameters, these can be inserted into an HTML page loaded in a

webview, through which the NemID JS Client can now be loaded. When the NemID JS client is

loaded, it will request parameters from the HTML page via the “SendParameters” message.

4. When the NemID JS client is loaded, the user interacts with it.

5. The NemID JS client communicates with the NemID Backend, and upon response from the NemID

JS client, the service provider app can retrieve the result of the authentication/signing from the

webview and following this securely transmit the authentication/signing response to the SP

backend.

6. The response must then be validated on SP backend. Given the result of the validation of the

response, the service provider can now communicate to the service provider app which appropriate

action to perform.

The above steps are elaborated on in the following subsections.

2.1 Parameter Generation

As stated above, before running the NemID JS client, it is necessary to obtain the signed initialization

parameters from the service provider backend.

Retrieval of initialization parameters (for banks this includes the SAML request) must be conducted over a

TLS connection ensuring that data is encrypted when transmitted between server and device1.

The private key of the service provider is not secure on the device, for this reason, signatures and

parameters should not be generated on the mobile device. It is not recommended to generate any

parameters on the device.

For information on how to generate initialization parameters, please refer to the Client Integration sections

of in [Integration-Bank] (banks) or [Integration-OCES] (non-bank service providers). For banks

information on the generation of the SAML request can be found in the SAML Authentication section of

[Integration-Bank].

2.2 Response Handling

The app integrating the NemID JS client should take care of communicating the login/signing response

received through NemID JS client from the NemID backend to the service provider backend. The service

provider backend must then validate and decrypt the received response. The response should not be

deemed valid before the service provider backend has validated the response with its private key. For

details on how to perform validation of responses, please refer to the relevant integration documentation

([Integration-Bank]/[Integration-OCES]). The communication between app and service provider

backend should be conducted over an encrypted (TLS) connection.

1 Note that in signing flows the signtext is among the initialization parameters.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 8 of 32

For a list of error codes, which can be received as responses, please refer to [SP-Docs] or

https://appletk.danid.dk/developers/listerrorcodes.jsp (note that you must be a whitelisted developer to

access this site, see more at [Become-SP]). It is the responsibility of the Service provider to implement

appropriate error handling given these error-codes.

2.3 Iframe Integration and Running the Client

This section covers general settings needed for integration of the NemID JS client on mobile devices. For

general information on integration of the NemID JS client into an iframe on a webpage (as well as in a

webview) please see the Client Integration section of the relevant integration document ([Integration-

Banks]/[Integration-OCES]). For details specific to the Android and iOS platforms respectively, please

refer to the below designated sections 3.3, 3.3.12 and for iOS and Android see also the provided app

examples, which are included in the code example package ([Mobile-source]).

2.3.1 Limited Mode and Client Size

NemID provides a responsive GUI mode called “limited” mode, which is specifically targeted for mobile

applications. To employ this mode, the following must be done (more can be found about “limited” mode

in [Integration-Bank] and [Integration-OCES] in the sections on UI Modes).:

o The URL used for launching the NemID JS client must be set as specified in the document

“Configuration and Setup” ([Config-doc]) among the documents in the NemID Service Provider

package ([SP-docs]), i.e. with [mode]= lmt

When running in “limited” mode the NemID JS Client will adjust to the size of the iframe provided for it. In

case of a very small sized iframe (smaller than 300x325px), for e.g. phones with small screens, the GUI

will adapt to use a smaller screen with less text, designed for exactly this situation, otherwise the NemID

JS client will run in a normal mode (both screen types are exemplified in the iOS and Android example

apps within the code examples).

It is recommended, when sizing the NemID JS client in the mobile application, to do the following:

• On a phone:

o Let the NemID JS client fill the screen of the phone, meaning that it is recommended to

employ a dedicated webview in which the iframe is set to fill the screen (see examples

below in Figure 2 and Figure 3).

• On a tablet:

o For signing flows: it is recommended to let the NemID JS client fill the screen (see

example in Figure 4).

o For login flows: it is not recommended to let the NemID JS client fill the screen but to set

the size by using an iframe with the width and height 320x460px (see example in Figure

5).

https://appletk.danid.dk/developers/listerrorcodes.jsp

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 9 of 32

In general, it is not recommended that the minimum size of the iframe is smaller than 320x460px.

Figure 3 NemID Login, iPhone 6S

simulator screenshot

Figure 2 NemID XML Signing, Nexus 5

(Android phone) simulator screenshot

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 10 of 32

Note that it is also possible to see examples of the GUI resized to other sizes on the developer site

(https://appletk.danid.dk/developers), using the Custom Parameters Demo Login.

2.4 Integration of Remember User ID

If the user checks the “Remember me” check box above the user name, the Remember User ID

functionality enables the username and password type to be remembered between app usages and is as

such essential in order to facilitate ease of use of NemID JS, when integrated into a mobile application.

To enable this feature the use and storage of the Remember User ID token must be implemented in the

app. The Remember User ID token, which can be retrieved from the signed flow response from NemID

must be set if present in the flow response. This should then be retained in the app memory such that

between app life cycles the token is stored, and that after re-starting the app, the token can be sent to the

service provider to be incorporated in the signed parameters. Note that it is highly recommended to

implement the use of the Remember User ID functionality.

This functionality is explained further in section 3.1.3.2 of this document and in the integration documents

([Integration-Bank]/[Integration-OCES]).

Figure 5 NemID Login, iPad Air simulator screenshot Figure 4 NemID HTML signing, Nexus 10

(Android tablet) simulator

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 11 of 32

2.5 Integration of App Switch

The NemID JavaScript Client supports signalling that an app switch is ready to be performed. This will

enable the integrating app to switch to the Common App that implements the NemID SDK that can

perform the second factor authentication.

To enable the App Switch event, use the switch / checkbox under Advanced Parameters and perform a 2-

factor flow. This will include enableAwaitingAppApprovalEvent in the startup parameters for the

JavaScript Client. When getting to the second factor authentication, the JavaScript Client will now send the

AwaitingAppApproval event, which is caught in the NemIDViewController / NemIDActivity.

The integration in the JavaScript Client is explained further in the integration document ([Integration-

Bank]).

3 Android and iOS Source Example Packages

The documentation for integrating NemID JS into iOS and Android mobile applications comes with an

accompanying code example package [Mobile-source], consisting of the following:

• Demo service provider app examples for:

o iOS

o Android

The example apps serve as assistance in integrating the NemID JS Client in a mobile application.

The NemID JS client is supported on browsers on iOS and Android, for the specific support-coverage on

mobile platforms please see the support-matrix at [Technical Requirements].

3.1 General Functionality of the Example Apps

The two provided implementation examples show how to implement the necessary functionality to use

NemID for authentication and signing on iOS and Android.

3.1.1 Supported Flows

The example apps support and exemplify how to implement the following NemID flows:

• Bank

o These flows are relevant for banks only and are described in [Integration-Bank]. The

following flows are available in the apps:

▪ 2 factor bank login

▪ 1 factor bank login

▪ 2 factor bank signing

▪ 1 factor bank signing

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 12 of 32

• OCES

o These flows are relevant for non-bank service providers and are described in

[Integration-OCES]. The following flows are implemented in the apps:

▪ 2 factor OCES login

▪ 2 factor OCES s igning

The following signtext-formats are implemented in the example apps for all platforms:

o TXT (plaintext)

o HTML

o XML

o PDF2

3.1.2 Functionality Overview

Each application is built up of two pages or views. The first view (MainView in Figure 6) controls, via a

simple GUI, which NemID flow to run, while the second (NemIDView in Figure 6) is a webview holding or

presenting an HTML page, runs the actual NemID JS Client. In the apps the MainView described here maps

to the classes MainActivity (Android) and MainViewController (iOS) respectively. NemIDView maps

to NemIDActivity (Android) and NemIDViewController (iOS).

Figure 6 describes how the app functions and essentially describes how the flow from Figure 6 is

implemented in the app examples.

2 PDF-signing is implemented here with the use of the whole (base 64 encoded) signtext, not with the use of external links

([Integration-Bank] and [Integration-OCES] describe the implementation of this).

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 13 of 32

Figure 6 Example App, functional overview

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 14 of 32

3.1.3 MainView Options and App/Backend functionality

The MainView of each of the apps presents a simple GUI. Here it is

explained in short how the apps function. Figure 7 shows the MainView

from the iOS example app (MainViewController), the corresponding

GUI in Android (MainActivity) is almost identical.

The app GUI is divided in to four areas:

- Parameters

- Flow Controls

- Result

- Advanced Parameters

 Parameters

This section lets the user control the most common parameters and

settings needed.

Language

There is a language-picker, which enables the user to pick between a

NemID JS client in Danish, English or Greenlandic.

Use small iframe

The example apps provide the possibility of forcing the small screen on

devices which otherwise have a large enough screen to support the

normal screens. This can be enabled by checking the “Use small iframe”

checkbox.

Signtext-format

This dropdown lets the user pick which of the four formats to sign when running a signing flow: plaintext,

XML, HTML or PDF.

 Flow Controls

For each of the flows there is an activation button, which can start up the specific flow.

The flows are divided into two main categories Bank and OCES (see above Section 3.1.1 for explanation

and description of supported flow types).

Figure 7 MainView screen-
shot, showing Parameters,
Flow Controls and Result
section

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 15 of 32

When initiating a signing flow, the user must first from the signtext-picker choose the desired signtext

format, and then start the flow by pressing the relevant signing flow activation button.

As a default both the SP backend and the NemID backend is set to point to the NemID test environment

(KOPI), for OCES, i.e. non-bank service providers this environment is also known as PP:

https://appletk.danid.dk. On KOPI an example service provider backend is deployed. The example apps

can request example parameters from this backend for example usage.

KOPI has an implementation of both the NemID backend and a test service provider backend for mobile

app usage (parameter generation and response validation). In order to best demonstrate the functionality,

as a default the app therefore points to KOPI for both backends.

In the code base of each of the apps there is however a clear logical separation of the two backends (and

their URLs). This enables the possibility of swapping in the service provider’s own backend for parameter

generation easily. See more about the communication with the SP backend in the example apps in Section

3.1.5.

Logout and 1 factor signing (Only relevant for banks)

The Logout button is only relevant for bank flows as it clears the Hsession token if this is saved on the

backend session on the test SP backend on KOPI. Furthermore, the ALLOW_STEPUP parameter is

implemented as the default. For more on these topics, see [Integration-Bank].

Clearing User ID token and the Remember User ID functionality

NemID contains a functionality called Remember User ID, this functionality enables NemID to be started

up with the UserId of the user filled in, and with the 4-digit password mode GUI, if the user has a 4-digit

password (see sections on Remember User ID and the Encrypted Assertion in [Integration-Bank] and

section on Remember User ID in [Integration-OCES]). It is essential to implement the Remember User

ID functionality in mobile applications, as this enables the NemID JS client to be loaded with the 4-digit

password GUI, when the user has such a password.

Any NemID JS client parameter response from the test SP backend on KOPI will include the

REMEMBER_USERID parameter. This is the recommended practice when utilizing NemID in a mobile

application.

If no value for this parameter is provided in the request to the test SP backend on KOPI, the response will

contain the parameter with the value empty (“REMEMBER_USERID”:””).

When the REMEMBER_USERID parameter is empty, the user is presented with a check box in the NemID

JS client, with the text “Remember Me”, which enables remembering the user. If the user checks this box,

upon a successful response this response will include a REMEMBER_USERID token value.

This token must be retrieved by the SP backend and communicated back to the app for storage (which is

also implemented in the example apps and on KOPI). The token is included in the encrypted assertion in

bank flow responses, and in the signed assertion for an OCES response.

https://appletk.danid.dk/
https://appletk.danid.dk/

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 16 of 32

If the REMEMBER_USERID token is included in the request to the test SP backend on KOPI, then the

REMEMBER_USERID parameter will have this value filled in in the signed NemID JS client parameters.

The Clear User ID button clears the REMEMBER_USERID from app storage if this is stored in the app.

For a more detailed explanation of the use of REMEMBER_USERID please refer to ([Integration-

Bank]/[Integration-OCES]). Here information can be found on how to retrieve the remember user id

token from the response received from the NemID JS Client.

 Result

This section holds the results of a NemID flow. It is divided into two parts a Status field and a Response

text field.

Response Text Field

In the bottom of the GUI a large text field is reserved for holding the response received from the NemID

backend, this is shown after a flow has completed (either successfully or with errors).

Flow Result Field

Above the response text field, there is a status code field, this will either state that the flow succeeded,

failed or was not valid based on the response received and validation of the response by the service

provider backend.

 Advanced Parameters

In the bottom of the MainView a section with more advanced parameters is given (not shown in Figure 7).

In this section it is possible to adjust the 1 factor signing mode, give specific values to the iframe holding

the NemID JS client and to specify another backend URL (this will however by default point to the same

backend for service provider and NemID). These features are only useful for more specialized testing.

Initially the parameters from the above section should be sufficient for understanding, testing and

implementing all common use of the NemID JS client in a mobile app.

You can furthermore enable the use of App Switch and suppressing push to a device. Enabling App Switch

will allow the integrating app to switch to another app that can perform the second factor authentication,

as discussed in 2.5. Suppressing push to a device will disable sending a push notification through Firebase

and only allow the current transaction to be pulled.

3.1.4 General App Limitations

The example apps provided in this documentation package are meant as examples and as such are not

production ready and should not be run in their current form in a production environment or against the

NemID Production backend.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 17 of 32

 Logging

Care has not been taken with regard to logging in the example apps, in fact logging has been added

specifically for instructional purposes, and only to be used in test environments.

It is the responsibility of the service provider that no sensitive material is logged in a production

environment.

3.1.5 Communication with test SP backend

As mentioned earlier, a “dummy” backend is available on KOPI (https://appletk.danid.dk). The source

code for this backend is not supplied as part of the example packages. For implementation of backend

functionality, please refer to [SP-docs].

The backend deployed on KOPI is able to supply signed test parameters to start flows against the NemID

backend on KOPI. Furthermore, it can validate SAML (bank login results) and XMLDSIG (all signing results)

responses signed by the NemID backend on KOPI as the result of a successful flow. Examples of the use of

this backend are incorporated in the app examples.

As described in Figure 6, when starting a flow, the app retrieves signed parameters from the test SP

backend on KOPI. After this the parameters are inserted into an HTML page, which is rendered in a

webview. The user then completes a flow. The result of this flow is retrieved by the app from the HTML

page. Rudimentary error handling is employed at this point. The app will attempt to validate any response,

if the response could not be validated by the backend, then this is communicated to the app, and this is

stated in the “Flow result” text-box of the MainView. The flow response is posted in the “Response” text-

box of the MainView. This means that if there for some reason is a flow error, example could be that the

digest of the initialisation parameters is incorrect (causing an APP001 error), the “Flow result” will state:

“Could not validate response.” and the “Response” will state the APP001 error response. In case the flow

could be validated by the test SP backend the “Flow result” will state: “Flow success. Response valid.” and

the “Response” will show the response received from the NemID JS client.

 Limitations of test SP backend

It must be stressed that the communication protocol and the implementation of this between app and test

SP backend used in the app examples is merely a rudimentary example showing the intended

functionality. The service provider must ensure to employ appropriate error handling. Furthermore, as

mentioned above, this communication must be conducted over TLS. For further information on response

handling see section 2.2. Finally, in the test apps, synchronous network communication is employed in

some places, it is the responsibility of the service provider to evaluate whether this is appropriate for the

application and implement corresponding asynchronous calls and handling if necessary.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 18 of 32

3.1.6 Security

The app example contains some examples of best practice security measures which are recommended to

include. This section describes these general measures. Note that these measures are not thought to be

exhaustive in terms of securing or hardening an app. Furthermore, the absence of the use of some of the

measures does not necessarily make the app insecure – these are simply some best practices to take in to

account when using the app examples in building your own application.

Each of the platform specific details of these measures are detailed further in the following sections on the

Android and iOS example. Several of these tips are also featured in the OWASP Mobile Security Testing

Guide (MSTG)3.

Do not distribute the parameter signing key in the app, store it on the backend

The private key used for signing parameters is not secure on the device, store it in the backend, and

procure signed parameters from the backend via the app.

Use TLS (Transport Layer Security) for all network connections

Whenever loading any content via the network, be this from the backend, when procuring signed

parameters or when communicating the login or signing response to the backend, ensure to use TLS. For

the purposes of the Webview, this means communicating over HTTPS. The NemID JavaScript client cannot

be loaded via HTTP, if the HTML for loading the iframe for loading NemID JavaScript is loaded from a

backend, this must be done via TLS, see more in the next section on Hardcoded HTML. Using TLS protects

the confidentiality of the data being transferred and protects it against tampering. The authenticity of the

backend is also ensured, meaning that you can count on the server that you are communicating with is the

correct one (this measure can be strengthened using the concept of Certificate Pinning, we do not cover

this here, but recommend using Certificate Pinning when possible).

Each of the platforms offer different ways of enforcing that TLS is used, see the Security sections for each

of the app examples, see 3.2.12 (Android) and 3.3.12 (iOS) for more on this.

Use Hardcoded HTML for loading the iframe (avoid dynamic loading when possible)

Each of the app examples use hardcoded HTML and JavaScript to load the iframe which loads NemID

JavaScript, this reduces the amount of dynamic content to be loaded in the Webview. Evaluate whether

this is a good approach for your app, since while there a security benefits in reducing the amount of

dynamic content, it may be more flexible to load the site from a backend. If possible, the content should

just be kept static. If the HTML is loaded from a file, restrict the files that can be loaded locally in the

Webview.

Remove unused functionality

The app examples include print functionality, in the case where only NemID login functionality is used in

an app, there is no reason to include this functionality. Best practice is to simply remove this functionality

if it is not necessary.

3 https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 19 of 32

Remove log statements

Log statements such as console.log, NSLog and Android Log statements should be removed from any

production source.

Do Origin-checking of post-message from the NemID JavaScript iframe

It is recommended to do origin-checking on the messages received from the iframe. This is implemented

in the HTML used in the app-examples. The messages from the iframe should always originate from the

applet.danid.dk domain in Production and appletk.danid.dk domain in the NemID test environment (KOPI).

Restrict unnecessary file access from the Webview

As stated above, if HTML is loaded from a file stored in the app, it is recommended to restrict the files

which can be loaded in the app to this file. If this is not the case, it is recommended to restrict file access

from the Webview completely. See more on this in the Security sections for each of the app examples, see

3.2.12 (Android) and 3.3.12 (iOS).

Avoid supporting or only use hardcoded HTML for Android versions lower than 4.2

Webviews on Android before version 4.2 have a vulnerability which, given the injection of malicious

JavaScript to the page being loaded in the Webview, can expose data in the native app via reflection4.

Hardcoding the HTML reduces the possibility of injecting JavaScript to the Webview. Avoiding the support

of lower versions than 4.2 (API level 17), ensures that this is not an issue. Note that the issue is also

present on higher versions of Android if the app is built with a minimum target at API level 16 or lower.

3.2 Android App Example

This section describes the contents of the Android Example App Source package and how to setup a

running example app.

3.2.1 Getting up and running with the app example

It is recommended to run the Android app example using the Android Studio IDE

(http://developer.android.com/develop/index.html). Android Studio can be used to run the example in a

simulator on the desktop. A wide range of simulators are available for this purpose, enabling testing in all

Android versions. From this IDE the app example can also be deployed to a physical Android device. If

running using Gradle, remember to update Gradle and synchronize project with Gradle files.

4 https://labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-code-execution/

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 20 of 32

3.2.2 Code Structure and Implementation overview

The MainView (see Figure 6 and Figure 7) functionality is implemented in MainActivity. From

MainActivity the flow options are set up, and the chosen flow is started by using the NemIDView (see

Figure 6) implemented in NemIDActivity.

The following warnings have been supressed in the demo project:

• Lint warnings enabling JavaScript ("SetJavaScriptEnabled", "AddJavaScriptInterface")

since these are required

• "NewAPI" to suppress API usages after minSdkVersion.

• "deprecation" to suppress warnings about using older APIs.

 Entry point code and short introduction to implementation

This section summarizes the implementation in short highlighting the important parts of the code.

MainActivity

When the user presses a flow button in the MainView, the method startFlow will be called with the set

parameters, as such this is the entry method in the Android example to starting up a NemID flow.

The startFlow method in short does the following: the SP backend is called to retrieve signed

parameters. These are set in a global variable on the MainActivity class (this is intentional, since these

often hold too much data to incorporate directly in an intent). Clientsize and NemID backend url is sent on

an intent, which is used to start up the NemIDActivity (NemIDView).

NemIDActivity

In the onCreate() method of NemIDActivity the following happens to load the NemID JS Client in a

webview: The flow specific settings are read from the received intent. Following this the webview is

created. The webview created is an instance of the class NemIDWebView, which incorporates, together

with NemIDActivity, special soft keyboard handling necessary to ensure a good user experience when

using the NemID JS Client (read more on this below in 3.2.8). Relevant settings are then set on the

webview. The signed NemID parameters (which are retrieved from a public variable on the

MainActivity) for the html page are incorporated into the html, which is then passed on for loading by

the webview.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 21 of 32

It is recommended to incorporate the NemIDActivity and NemIDWebview (and classes that these rely

on) in the service provider application as is, as these incorporate several parts, which are necessary for

the NemID JS Client to function optimally in an Android application, such as: customized keyboard

handling, printing capabilities and long click handling. All of these parts are described below.

3.2.3 Webview HTML

The html to be loaded by the webview is retrieved for loading using the getHtml method. This html

incorporates JavaScript (retrieved via the method getJavascriptSrc), which implements all

communication between webview and App. The NemID JS Client communicates with the html page via

messages (as described in the [Integration-Bank]/[Integration-OCES] documents, see Client

Integration sections. Webview to App communication works via the custom JavaScript interfaces defined in

NemIDActivity and NemIDWebView, the most important example being the action when the

“changeResponseAndSubmit” message is received, in this case the NemID JS client serves a

flowresponse to the HTML, which is then communicated via the getResponse() method in the JavaScript

interface defined in NemIDActivity.

3.2.4 Remember User ID

On Android the Remember User ID token is saved to app memory using SharedPreferences, this

ensures that the token is stored across app life cycles. This is done using setRememberUseridToken in

MainActivity.

3.2.5 External Link Handling

External links can be found embedded in the NemID JS client (help pages, forgotten password etc.) and in

sign texts. External links must be opened in either a new web view inside the app or by opening a browser

app. Filtering of "safe" links is not recommended since it could stop internal links in the NemID JS client

from showing.

3.2.6 Handling Long Click

Since the NemID JS client is embedded in a web view, it is by default allowed to long click and select

elements. However, this can be confusing for the mobile user, since buttons and graphics are not usually

selectable in a mobile application. The demo app shows how to disable long press for Android webviews

(setOnLongClickListener in the onCreate method in NemIDActivity).

3.2.7 Printing

It is possible to print signtexts via the print icon in the signing flows. Programatically printing from the app

should be triggered when "RequestPrint" is received in JavaScript of the HTML of the webview. The

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 22 of 32

print content is downloaded as HTML. In the demo app printing is handled in the requestPrint method

in NemIDActivity. There are limitations to printing on older Android versions and currently only printing

of plaintext, HTML and XML type signtexts is possible (see limitations sections below).

3.2.8 Keyboard Handling

Due to default soft keyboard handling in Android and the many different manufacturers of Android devices

employing different soft keyboard handling, customizations have been implemented in the code examples

to secure a good user experience, when using NemID in an Android application. These customizations

should be employed when integrating NemID JS in an Android application. The customizations are

described in detail below. There are however still some limitations (see Limitations on Android below).

Ensuring keyboard availability

By default, for usability in the normal case, the keyboard does not pop up on webpage in an Android

browser, when focus is set in a field. The following customization is employed in the example app: When

the NemID JS client is loaded the message "RequestKeyboard" is received in JavaScript from the NemID

JS client. Using this, the soft keyboard can be triggered via the JS interface in NemIDActivity.

Ensuring correct keyboard layout

When the NemID JS Client is loaded, the keyboard should be popped up with the relevant layout

(numerical/alpha-numeric). Some Android devices will always show the alphanumeric keyboard in this

case (even though a numeric input type is defined on the input field). To ensure that the numeric

keyboard is shown, when a user encounters the 4-digit password boxes, further handling must be added

for this. Handling is implemented in the app example package: The NemID JS Client will communicate

which input type is requested for the field in question, when sending the "RequestKeyboard" message.

The NemIDWebView defines a custom JavaScript interface, with the method setKeyboardType, which is

used to set the keyboardtype.

Handling Backspace in the 4-digit case

On older Android versions (< API level 22), it may not be possible to delete previous password characters,

unless specific handling is implemented. The problem arises since the KEYCODE_DEL (backspace)

keyevent is not always handled correctly when employed in a webview. A customized fix has been

implemented, please see implementation for details.

Adjusting GUI to account for Keyboard pop-up

In order to ensure that the keyboard does not cover the input fields, the

ViewTreeObserver.OnGlobalLayoutListener to decide when to adjust the GUI as this is not done

automatically on all Android devices.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 23 of 32

3.2.9 Logging

The JavaScript console.log statements are written to the Android log, so this information is available for

debugging.

3.2.10 Cookies, Local Storage and Caching

Cookies, local storage and caching are enabled on the webview. These should not be disabled as they

benefit performance of the NemID JS Client.

3.2.11 Limitations on Android

• Printing: Android printing was first introduced in API 19 (will not work for API 16,17,18). Printing

of PDF signtexts is not currently supported.

• Keyboard layout on HTC devices running older Android versions: It has been found that on

some HTC devices running <API level 22, keyboard is not restarted upon focus to a new input

field, meaning that showing the phone keyboard (numeric only) may leave the user stuck with the

numeric keyboard, meaning that the user is not able to type in alphanumeric characters if this is

necessary. For this reason, the alphanumeric keyboard is forced on these devices.

• Rotation: Width and height are set automatically to a fixed number of pixels upon load of

MainActivity depending on device size and are not changed upon rotation. Changing the sizes

on rotation or setting sizes in percentages currently gives unpredictable behaviour on some

devices. On some phones and smaller tablets rotating with fixed width and height may yield

undesirable layout. For this reason, the recommendation is to do as in the app example, where the

app is locked in portrait mode for devices with configurations other than

Configuration.SCREENLAYOUT_SIZE_XLARGE (large tablet size).

Furthermore, to avoid reloading the contents of the webview upon rotation (since it will break the

NemID flow), the following has been added to the Android manifest:

android:configChanges=”keyboard|keyboardHidden|orientation|screenSize”

3.2.12 Security

This section describes some of the platform specific security measures or best practices included in the app

example for Android, and some possible additions. For a more general description, please see section

3.1.6.

Restrict unnecessary file access from the Webview

Since loading of local files and resources is not necessary in the app example, these features are disabled.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 24 of 32

// Disabling access to files and other content
settings.setAllowFileAccess(false);
settings.setAllowFileAccessFromFileURLs(false);
settings.setAllowUniversalAccessFromFileURLs(false);
settings.setAllowContentAccess(false);

Enforcing TLS

It is recommended to set the Network Security configuration to disallow cleartext traffic:

<network-security-config>

 <base-config cleartextTrafficPermitted="false">

 </base-config>

</network-security-config>

This is demonstrated in the app examples, where this configuration is referenced by the attribute

android:networkSecurityConfig. The networkSecurityConfig attribute is ignored below API level 24, so to

cover API level 23 the example apps also have the following Android manifest attribute:

android:usesCleartextTraffic=“false”

The usesCleartextTraffic attribute is ignored when attribute networkSecurityConfig is present. Below API

level 23 there is no direct system support for blocking cleartext traffic and restrictions must be

implemented manually. This is demonstrated in the app examples by overloading

WebViewClient.shouldInterceptRequest to intercept all cleartext traffic from the webview. This mimics the

hasOnlySecureContent method on webview in iOS, see section 3.3.12

According to the Android documentation these cleartext settings ensure that loading over the network is

done via TLS on a best effort basis. Some third-party libraries may not honour this, and the Webview class

does not honour this attribute for API levels lower than 265. For these API levels it is encouraged to

implement a manual check for non-TLS traffic. This is demonstrated by the mentioned overloading of

shouldInterceptRequest, where a warning will be given, and the flow terminated if the webview loads a

non-https resource:

5

https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPe
rmitted()

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 25 of 32

Note that external URLs are loaded in a browser in the example apps, rather than in the webview, but they

are also subject to a cleartext warning due to the overloading of shouldInterceptRequest.

3.3 iOS App Example

This section describes the contents of the iOS Example App Source package and how to setup a running

example app.

3.3.1 Getting up and running with the app example

The demo project can be run by opening TestNemIdJavascript.xcodeproj in the iOS source library.

The project requires Xcode 7.

3.3.2 Code Structure and Implementation overview

The MainView (see Figure 6 and Figure 7) functionality is implemented in MainViewController. From

the MainViewController the flow options are set up and the chosen flow is started by pushing the

NemIDViewController (NemIDView, see Figure 6), this loads the NemID JS Client in a webview via the

method loadNemID().

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 26 of 32

 Entry point code and short introduction to implementation

This section summarizes the implementation in short highlighting the important parts of the code.

MainViewController

When the user user pushes a flow initiating button in the MainView, the method startFlow() is called.

This method takes care of retrieving signed NemID parameters from the SP backend, and sets variables

(e.g. NemID JS client size, user specified settings etc.) needed for NemID JS client initialization on the

NemIDViewController. Finally, it pushes the NemIDViewController to load NemID in a webview.

NemIDViewController

When the NemIDViewController is pushed and the lifecycle method viewDidAppear is called, the

NemID JS client is loaded via the loadNemID method. loadNemID incorporates the values set by

MainViewControler into the html and JavaScript, which is then loaded in the webview (among these are

the signed NemID parameters).

It is recommended to incorporate the NemIDViewController as is, as this holds the functionality needed

for integration of the NemID JS Client.

3.3.3 Webview HTML

The html to be loaded by the webview is defined in the loadNemID method of NemIDViewController.

This html incorporates JavaScript (retrieved via getJavascript), which implements all communication

between Webview and App. The NemID JS Client communicates with the html page via messages (as

described in the [Integration-Bank]/[Integration-OCES] documents, see section on Client Integration,

in the subsection on Start-up and handling responses). Webview to App communication works via the

request intercept in shouldStartLoadWithRequest, which intercepts requests using a defined url

scheme. Upon intercept the stringByEvaluatingJavascriptFromString is then used to call into the

JavaScript of the webview to retrieve content.

3.3.4 Web views

On iOS there are two different web views, UIWebView and WKWebView. Due to better performance of

JavaScript it is recommended to use WKWebView. WKWebView is a light weight version of UIWebView and

has some limitations compared to UIWebView, so it is advised to investigate the differences before

choosing a web view to make sure it meets the needs of your app.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 27 of 32

Note: The standalone SFSafariViewController should NOT be used for the NemID JS client, as it has

no way of communicating through JavaScript and cannot be verified as safe for NemID transactions.

3.3.5 Remember User ID

On iOS the Remember User ID token is saved to app memory using NSUserDefaults, this ensures that

the token is stored across app life cycles. This is done using setRememberUseridToken in

MainViewController.

3.3.6 Client presentation on iOS

Since iOS does not have a hardware back button, it is recommended to always have a navigation option to

exit the NemID JS client flow. Using a full screen web view for the NemID JS client without a back button

can leave the app in an unrecoverable state if e.g. the internet connection is lost. To demonstrate the

recommended navigation, the demo app is made with a visible back button.

3.3.7 External link handling

External links can be found embedded in the NemID JS client (help pages, forgotten password etc.) and in

sign texts. External links must be opened in either a new web view inside the app or by opening Mobile

Safari or similar mobile browser app. Filtering of "safe" links is not recommended since it could stop

internal links in the NemID JS client from showing.

3.3.8 Handling long press

Since the NemID JS client is embedded in a web view, it is by default allowed to long press and select

elements. However, this can be confusing for the mobile user, since buttons and graphics are not usually

selectable in a mobile application. The demo app shows one way to disable long press gestures for

UIWebView ('disableLongPressGestures' in NemIDViewController). See Limitations section

regarding disabling long press on WKWebView.

3.3.9 Printing

It is possible to print signtexts via the print icon in the signing flows. Programatically printing from the app

should be triggered when "RequestPrint" is received in JavaScript of the HTML of the webview. The

print content is downloaded as HTML. There is a demo implementation using the

UIPrintInteractionController in NemIDViewController. Printing of PDF signtexts is currently not

supported (see limitations below). Printing of all other signtexts: plaintext, XML and HTML is however

supported.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 28 of 32

3.3.10 Cookies, Local Storage and Caching

Cookies, local storage and caching is enabled on the webview by default. These should not be disabled as

they benefit performance of the NemID JS Client.

3.3.11 Limitations on iOS

• Long press WKWebView: The demo app currently does not implement disabling of long press

gestures on WKWebView. It is currently unknown if this is supported.

• Keyboard handling: A JavaScript message "RequestKeyboard" can be received when the

keyboard should be displayed to the user. This is not implemented in the iOS demo app and

currently it is unknown if this functionality can be implemented.

• Focus in the username, but can't enter characters (UIWebview): Due to a bug in

UIWebview, when keyboardDisplayRequiresUserAction is set NO, then the keyboard pops-up

automatically with focus in the username, however, it is not possible to enter characters, and it

only becomes possible to enter characters once another field has had focus, and focus is then

brought back to the username field by the user. This bug is not present when using WKWebview.

However, in one scenario, iOS chooses UIWebview on your behalf: When a webpage, using the

meta-tag <meta name="apple-mobile-web-app-capable" content="yes">, is stored to the home

screen, then the webpage is opened in a native app context, by iOS, using UIWebview with

keyboardDisplayRequiresUserAction set NO, meaning that the issue is present in this case. One

workaround is documented below in 3.3.11.1.

• Printing PDF: There is currently no support for printing PDF signtexts from the NemID JS client

on iOS. However, it is always possible to make the document available inside the app using

NemID.

• Rotation: Width and height are set automatically to a fixed number of pixels upon load of

MainViewController depending on device size and are not changed upon rotation. Changing the

sizes on rotation or setting sizes in percentages may give unpredictable behaviour on some

devices. On phones rotating with fixed width and height may yield undesirable layout. For this

reason the recommendation is to do as in the app example, where the app is locked in portrait

mode for phones (this is done in the associated .plist configuration file).

 Focus in the username – a workaround

Add a text field, that can't be seen, because it is inside a div with width and height 0. It should be placed right

before the iframe to avoid too much scrolling on the page:

<div style="width: 0; height: 0; overflow: hidden;">

 <input type="text" id="tmpfocus" autocomplete="off" autocorrect="off"

autocapitalize="off" spellcheck="false" />

</div>

<div id="nemid_layer">

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 29 of 32

 <iframe...

You can't use style "display: none;" to start with, since it is not possible to set focus on a hidden field.

One further enhancement, to avoid scrolling, would be to set the position to be relative with some fitting "top"-

value, so the invisible input field has the same vertical position as the input field in the JS client. For instance,

like this:

<div style="width: 0; height: 0; overflow: hidden;">

 <input type="text" id="tmpfocus" autocomplete="off" autocorrect="off"

autocapitalize="off" spellcheck="false" style="position: relative; top: 113px" />

</div>

<div id="nemid_layer">

 <iframe...

In the code listening for events from the NemID iframe, set focus on the invisible field and set display none,

when you get the "RequestKeyboard" event:

// This should be a page "global" JavaScript parameter.

var setTmpFocus = true;

...

 // This should be inside function receiving events from the NemID iframe.

 if (setTmpFocus && message.command === "RequestKeyboard") {

 var elm = document.getElementById('tmpfocus');

 elm.focus();

 elm.style.display = 'none';

 setTmpFocus = false;

 }

• The setTmpFocus variable is just to ensure the JavaScript is only executed once.

• style.display has to be set to ‘none’ after setting focus, since otherwise the caret in the text field will be

visible when running the iOS homescreen "app", even if the text field is invisible.

With this workaround, the keyboard pops up, but the focus is removed from the user id field immediately, and

when the user taps on the field, he will be able to input text.

Note: The "RequestKeyboard" event may not be fired in signing scenarios. Alternatively, it should be possible

to create some JavaScript, that checks, when the iframe is done loading, but this is not shown here.

3.3.12 Security

This section describes some of the platform specific security measures or best practices included in the app

example for iOS, and some possible additions. For a more general description, please see section 3.1.6.

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 30 of 32

Restrict unnecessary file access from the Webview

As opposed to Android, on iOS file and content loading restrictions are enabled on the Webview by default.

Enforcing TLS

With iOS 9, Apple has introduced App Transport Security (ATS), which is enabled by default. ATS enforces

all connections to use HTTPS, using TLS 1.2 or higher, and using best practices for secure communication.

ATS can be disabled for internal testing purposes, but it is strongly advised to keep ATS enabled in any

publicly available app.

Note that ATS is only active when the address being loaded has a hostname, i.e. if the address being

loaded is an IP-address, ATS is not active6.

WKWebview provides the method hasOnlySecureContent, which can be used to check whether any loading

of data over the network in the Webview is done without the use of TLS (even when using an IP address

instead of a hostname address). This has been implemented in the example such that if any content

loaded in the Webview is not loaded over TLS, a prompt is shown to the user as shown below and the flow

is dismissed.

6
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKey
s.html#//apple_ref/doc/uid/TP40009251-SW33

https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 31 of 32

NemID JavaScript Client Integration for Mobile Applications, Version 1.5

Page 32 of 32

References

Reference ID Document Name

[Integration-Bank] “Implementation Guidelines for NemID (BANKS)”

NemID Integration - Bank.pdf

Available in release package for banks.

[Integration-OCES] “Implementation Guidelines for NemID (OCES)”

http://www.nets.eu/dk-da/Service/kundeservice/nemid-

tu/tjenesteudbyderpakkeJS/Documents/NemID%20Integration%20-

%20OCES.pdf

[SP-Docs] NemID Service Provider documentation package

In Danish: http://nets.eu/tu-pakke

In English: http://nets.eu/sp-package

[Config-doc] “Configuration and Setup”, v. 1.16

http://www.nets.eu/dk-da/Service/kundeservice/nemid-tu/NemID-

tjenesteudbyderpakken-okt-

2014/Documents/Configuration%20and%20setup.pdf

[Mobile-source] For non-bank service providers, this is avalailable under

“Kildekode”:

In Danish: http://nets.eu/tu-pakke

In English: http://nets.eu/sp-package

For banks: This is part of the release available for banks, package is

named Mobile Example NemID Javascript.

[Become-SP] Bestil NemID Tjeneste Udbyder:

http://nets.eu/tu-bestil

[Technical

Requirements]

https://www.nemid.nu/dk-da/om-nemid/tekniske_krav/

http://www.nets.eu/dk-da/Service/kundeservice/nemid-tu/tjenesteudbyderpakkeJS/Documents/NemID%20Integration%20-%20OCES.pdf
http://www.nets.eu/dk-da/Service/kundeservice/nemid-tu/tjenesteudbyderpakkeJS/Documents/NemID%20Integration%20-%20OCES.pdf
http://www.nets.eu/dk-da/Service/kundeservice/nemid-tu/tjenesteudbyderpakkeJS/Documents/NemID%20Integration%20-%20OCES.pdf
http://nets.eu/tu-pakke
http://nets.eu/sp-package
http://nets.eu/tu-pakke
http://nets.eu/sp-package
https://www.nemid.nu/dk-da/om-nemid/tekniske_krav/

