Terminal Architecture for PSAM Applications
(TAPA)

Application Architecture Specification

Version 3.0

October 2013

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

i
TAPA Application Architecture 3.0
TABLE OF CONTENTS

1. REVISION LOG ..ottt 1
2. DOCUMENT OVERVIEW.ccoiiiiiiiiiiie ettt et e 4
2.1 PURPOSE ...ttt bbb 4
2.2 INTENDED AUDIENCE ...ocvtitiiiitiiis ittt ettt b bbb 4
2.3 INCLUDED IN THIS DOCUMENTcovitiiiiiiitisis ittt sttt 4
2.4 NOT INCLUDED IN THIS DOCUMENToovitiiiiiisiiiis ittt sttt 4
2.5 REFERENCE INFORMATIONccvtiiiiiitiiic ittt ittt ettt bbbt 5
2.5.1 Requirement NUMDEIINGccccccoiiiiiiiiiiiiee ettt sr s 5
2.5.2 REfOIOIICES ...t 5
2.5.3 Command and Response FOrmat CONVENELIONS...........cc..ccuuvueriuesieerienieesieeseesenaneeseesseesseesseenes 6
2.54 Notational CONVENETIONSccccuviruiiiiiiiisi ittt 7
2.6 DOCUMENT ORGANIZATION.....uciuiiitiiieiistisis ittt ettt et et bbbt st 7
3. ARCHITECTURAL OVERVIEWociiiiiiiiiiici e 9
3.1 INTRODUCTION ...ttt bbb bbb bbb bbb bbb 9
3.2 GENERAL REQUIREMENTSuutttttttteetiiiutteeteeesssiistssseessessiasssssessessimissssssssesssnsssssesssesssnsssssssssesssninnns 9
33 TERMINAL APPLICATION ARCHITECTUREvoviiiiiiiiiitniisicsis sttt 9
4. FUNCTIONAL REQUIREMENTSciiiiiiiiiiie et 11
4.1 THE ROUTER ...ovitiiiiiiie ittt et b bbb 11
4.1.1 Functional REQUITEMENLSc...cceceuriieiieeieeseeseesieesiesseesseesteesseestessessseesseesseenseensesssessesssenns 12
4.1.2 Error HANAIINGc.cccoooiiiiiieie ettt nn e 12
4.2 THE HANDLERS. ..ottt bbb bbb 12
4.2.1 DeViICe HANGIETSoccviviieiiiiiieeiite ettt 13
4.2.2 Multi-Application Driver HANAIEYc..cccouiueiiueiieeiesieseeseesesses e seesseenseensesneessaesseens 13
4.2.3 EVENE HANGICKcocveiiiieiiiieceeeee et 13
424 GeNneral CRATACLETISTICSc.ouiveiiiiereeiie ettt ettt 14
4.2.5 Functional REQUITEMENLSc...ccecoueiieiieiieeseeseesieasiesseesseesteesteesaessessseesseesseenseensesnsessenssenns 16
4.3 MESSAGE HANDLING ...ttt bbb bbb e bbb bbb 17
4.3.1 Time-0Ut MANGAGEIMENLc..ccviieiiiiii ittt sn e 22
4.3.2 EXCeption HANAIING.......c..c.ccoiiiiiiiiiii ettt 23
4.4 HANDLER-INDEPENDENT MESSAGES.......c0cuiuiiiiiiiiiiiii i 23
441 Get Handler AAIESSESc.cuouiiiieiieieiesie ettt 23
AN 0) 1 -1 1 5 (¢ 1 T =3 oSSR 25
4.4.3 CloS HANGIET ..ottt 26
R V1 L= Lo Ta Lo | (=T Y 1 [1 PSR 28

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture 3.0

4.4.5 Read HANAICI SETINGccoeoiiiiiiiiiiii ettt
446 SUMMATY ..ccvvieieie ittt ettt b et e e bt ekt e b e e ek e e bt e e ke e e be e e beeebe e e sbeeebeeeees

5. THE MULTI-APPLICATION DRIVER HANDLERccccoiiiiiiiiiiieeee e
5.1 APPLICATION SELECTIONcvtuiitiirereeientereeiesreseesesneseesesreseesesre e enesne e esesne e enesre e enenne e enenne e enenneseenenneeas
5.2 TERMINAL INITIALIZATIONotiitiiteitieteeseestestesseste st stesseesee et sre st sse s e e e e nbean e s bt aneeb e e e eneennenne b ane s
5.3 TERMINAL SHUTDOWNcotiiiiitiireeetesreieeiesreseese s et sseseesesne e asesre e esesne e enesre e snenre e enenne e erenne e enenneseas
5.4 TERMINAL CONTROL ...cuteutiutetististesteeteeseesre st ssesbesbe st sseesee s esenbeab e sk e sbeeb e e e e b e nbeab e bt sbe e b e aseenbennennenreaneas
5.5 MULTI-THREADINGuttettiteeetinrereetesre et sre et re et sre et r e et r e et an e b e r e e nenr e e nenne e renne e enenre e
5.6 EXCEPTION HANDLING ...ceuviutitiitiitestietietes ettt sttt sb ekttt sn bbb e e nn e ne b nne s
6. THE CARD HANDLER.........cocoiiiiiiiiiei ettt ettt nb bbbt e e nn b nne e
6.1 COMMANDS SENT TO THE MAGNETIC STRIPE READERccuviiiiiiiiiitisiesieeiie et
6.1.1 Read MAGNELIC SETIPE........uooe ettt bbb ar s
6.1.2 Write MAGNELIC STIIPE........coiieiiieeiee ettt
6.2 COMMANDS SENT TO THE PROCESSOR CARD READERcccuiiiiiiiiiiiiiiiiiiii i
6.2.1 MeSSaGe HANAIINGcocuioiiiiiiiiiee et
6.2.2 ENCIPREred MESSAQGESccccuiieiieieieiee ittt sttt bbbt an s
6.2.3 ICC COMMANA/RESPONSE........coveueesieeieeieeiee e sneeseeesteeste e e antesseesseesteesteesteaeeaneesneesneesseenseenes
6.2.4 ICC POWEI-ONeoiue ettt nne e nne e
6.2.5 ICC POWET-Off ..ottt bbbt ar s
6.2.6 ICC QUETY ..ottt ettt ettt etttk b ek e et et e et e et ennb et e e nreean
6.2.7 Verify OfflING PINccccoioiiiiiieiiiieie ittt bbbt sr s
6.3 COMMANDS SENT TO MEMORY CARD READERcccciiiiiiiiiiiiiiic i
6.4 COMMANDS SENT TO THE CONTACTLESS CARD READER........ccciiiiiiiiiiiiiiiin i
6.5 SUMMARY ..ottt sttt ettt et r e Rt e R e e Rt e Rt R e e Rt ne e
7. THE USER INTERFACE HANDLERccooiiiiiiiiit it
7.1 MESSAGES SENT TO THE USER INTERFACE HANDLERceitiiiiitiitiitinie ettt
7.1.1 DiSPIAY MESSAGEc.eoiviiiiiiieiiieee ettt bbbt b bbbt ne
7.1.2 PIINEMESSAGEcveeiueieiiei sttt ettt n et nr e nr e n s
7.1.3 CONfIrM AMOUNLociiiiieiiieeie et bbbt bttt nnenne s
7.1.4 PUIGE PriNt BUJET ..ottt ne
715 GELATMOUNL ... bbbt er et bbb
7.1.6 FUNAS AVAIIADIE............cooiiiiiiiiii ettt
7.2 PINPAD HANDLERccoiiiiiiiiitiiti it bbb bbb
7.2.1 GEt KeY CRECK VAIUE............c.ccouiieesresii et etesee s e ettt et ae et e s e sneestaesteesaeenaeanees
7.2.2 Get PIN Pad Public K€Y RECOId.........c..ccucouueiiiieiiee i e sttt ane et sna et
7.2.3 Verify PSAM Public Key CertifiCate..............ccuouiiiimiiiiiisiiiiaiieieeie et

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

iii

TAPA Application Architecture 3.0
7.24 SUDMIE INTEIALI K@Yooveie ettt ettt e te e een e nneesta e teesaeeneeaneas 79
7.2.5 INIEIALE PIN ENLETYoeiviie et ste ettt e stee st e et sne e steeteenteanteaneenneentaenteesaeeneennees 84
T.2.6 GELPIN ..o bbb 87
7.2.7 TerMINAte PIN ENETYccccoioeiieiii st eieetestesteestee s e e ste e sneesnaesaeenseenteantesneesseesaaesteesenanennnees 90
7.3 SUMMARYottitiitiateateet et e etttk h ek e e s e et b bt e bt e R e bt e s e e oAb e R AR AR e R R et R e R R Rt Rt Rt e s e e r e reane s 92
8. THE MERCHANT APPLICATION HANDLERccoiiiiiiiiii it 94
8.1 MESSAGES SENT TO THE MERCHANT APPLICATION HANDLER ...uvvviiiieiiiiiirieeeeeesieititreeeeeessesanbrnneeeeessnannes 94
L B €1 o 7 To) | USSP 94
8.1.2 Get AMOUNE ENNANCEAccoueieeieeeiie e st stt st ese e stae et te e sneesneesneenteenaeaneesneenneens 97
8.1.3 Transaction COMPIELEd............c...cceioueiiuiieiiieiieeseese et ete et e e te e sree e e steenteeneeaneesnaenreens 99
8.1.4 FUNAS AVAIIADIEccuvceeeeeie ettt ettt te et ane e nneene e 101
8.1.5 DiSPIAY MESSAGEcecoveiiieieeieeieiesee ettt bbb bbb 102
Lo BT o 1 T ede)) 11 Te 7 T KSR 102
8.2 SUMMARYceutitite ittt ettt et bbbt h bttt h ekt bR et oA bR R R R R e e Rt e e R R Rt Rt Rt en e e e n e renre 103
9. THE PSAM HANDLERoooiiiiiiiii et bbb nn e 104
9.1 MESSAGE HANDLINGcviteeiieeitieie sttt ame e n et e s e nn e nn e e nne e ne e n e 104
9.1.1 Messages sent to the PSAM HANAIETcccccooiiiiiiiiiiiiiiiiieeie st 105
9.1.2 Messages SeNt t0 the PSAMccccoooiiiiiiiiiiiiiiieeie ittt 105
9.1.3 MesSSaQGes from the PSAMc.cccoiiiiiiiiiiiiieieeie ettt 107
10. PSAM APPLICATIONSot bbb bbb nnenn e 111
10.1 PSAM INITIALIZATION ©.o.oviiieiiieiiieesne et e ss et sme s ame e ane e n e an e nn e nn e r e nneeneanne s 111
10.2 PSAM SHUT-DOWN ...utiutitiitistesteeteeseeste st st bt s bbbt bbb e e e b b an e b e bt eb e e e enr e e e nnenre e 112
10.3 PSAM COMMANDS AND RESPONSESccuvieurirtresieesreesreesres e sseesnessneesneesne e sn e sneesneesneennessnesnnssness 112
10.3.1 MESSAGE FOTMALS. ...t bt 113
10.3.2 APPLIcAtion SEALUS WOTAScoeoueieisreie et et se e see e se e sreesteenteenaeaneesnaenseens 115
10.3.3 SEATE-UD PSAM ...ttt ettt et et e s te e te e e sneesnaenneeneenes 116
10.3.4 GEt SUPPOTLEA AIDS ..o se ettt st s e e sttt te e te e e s e saeenteenteeneenneenreens 117
10.3.5 PSAM SRUEAOWNoovvie ettt e et saa e ste e nae s e nneestaesteeseeaneeanees 119
10.3.6 GOE INEXE ... ettt ettt te st te ettt sse e st e s et et e e s e es e s Eeenteeseeeseeeneesneesteenteenteeneeaneenreens 120
10.3.7 ReSPONSE COMMUANAccueieiiieii i eiesee e eeste e ste e nae e sseestaesteesteaneeanees 121
10.3.8 Synchronize PSAM - PIN Pad/Secure Cryptograhic Deviceccccoovveiinieninnenn. 122
11. THE DATA STORE HANDLERocoiiiiiiiii e 125
11.1 GENERAL REQUIREMENTSuuuttetteeeeiiiittteeeeeeessiitbsseessesssassssesssesssssssssssssssssssssssssssssessinsssssssssesnn 125
11.2 MESSAGES SENT TO THE DATA STORE HANDLERc.vviiiiiiiiiiiie e e 125
11.2.1 File MANAGEMENL...........cocoueiiiiiiie ittt bt 125

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

iv

TAPA Application Architecture 3.0
11.2.2 CrEALE File ... 125
11.2.3 DEIOLE Fil@cooveeeeeieeee et 127
11.2.4 AdA File RECOTT ... s 129
11.2.5 GEL FIle RECOTT ... 132
11.2.6 0 T e 1 1L =Tl) 7 SR 134
11.2.7 Find and Get File RECOTcccccueiiiiiciei et 137
11.2.8 Delete File RECOTTcccooeoiiiieiiecee e 139
11.2.9 Find and Delete File RECOTUcc.couoiiiiiiiieieiisecee e 141
T11.2.10 Cle@r File.......occouiiieiiiieeeee ettt 143
11,3 SUMMARY oottt bbb 145
12. THE COMMUNICATION HANDLERc.cceoiiiiiiiiiiiiciie e 146
12.1 MESSAGES SENT TO THE COMMUNICATION HANDLERcccvviuiiiiiiiiiiiin s 146
12.1.1 Initiate COMMUNICALION SESSIOMcccviiviiiiiiiiiii s 146
12.1.2 Terminate Communication SESSIOMNccocvviiiiiiiiici 148
12,2 SUMMARY ..ottt bbb 150
13. EVENT HANDLERccooiii et 151
13,1 EVENT TYPES..iiiiiiiiiiiiiiiis it 151
13.2 EVENT HANDLER MESSAGEScuviuiiiitiitiiitiitiisin it 151
13.2.1 AA EVENT ... s 152
13.2.2 GEE EVEINE ...ttt 152
13.2.3 FINA EVENE ..ot 154
13.2.4 FIUSH EVENE QUEUEcccuveeieiee it s s e ste e e e stae e tte e stae e st e e sae e et e e naae e staeenbeeesteeenneeeees 156
13.3 SUMMARY ..ottt bbb 158
14. SECURE CRYPTOGRAPHIC DEVICE PROCESSINGc.ccoiiriiiiiiiiineneene e 159
141 OVERVIEW ..ottt bbb bbb bbb bbb bbbt 159
142 PIN PAD PROCESSINGccuiuiiiiitiiiiiiti ittt 159
14.2.1 PRYSICAL ENVIFONIMENTocvve i seeesit et eeeie e e et snaesteaaeanaesnaensaestaesneeseeanaesnees 159
14.2.2 Establishing the SECUIe ZOMEcccuioueieiiiiie it 160
14.2.3 Supported CONfIGUIALIONSccccuoviiiiiiieeieee e 161
14.2.4 D 02) 7] L2 Tz £ Lo i Lo SO 162
14.3 PIN PAD/PSAM INITIALIZATION ...cuvtettesteesteeseesseesseesenesenssesasesssessssesseesseessenseessssssesssesssesssnssnsnees 162
144 PIN PROCESSING......ccoiiiiiiuiiiiiiiiisiitc ittt bbb bbb bbb 164
14.4.1 Secure Cryptographic Device SEALEccccoiiiiiiiiiiiiiieieieie e 164
14.4.2 PIN ENETY oottt et et 166
14.5 PIN VERIFICATION ..ccuiiiiiiiiiiitii ittt 170
14.5.1 (0T T=0 o N V=T oo 1 Lo RS 170

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture 3.0

14.5.2 Offline PIN VerifiCAtionccouiuiiiaieiiiiie ittt
14.6 SECURITY REQUIREMENTSuutttirtieeiieiittreeeeeeessiittsseessesssassssesssesssasssssssssssssssssssssessessissssssesesesnn
14.6.1 BUSINESS ENEILIESoocviiiiiiiiiiii i s
14.6.2 Physical SecUrity ReQUIFEIMENES............ccucueriueriueieeiesresseeseesteesieessesseesseesseesseeseessesnees
14.6.3 Logical Security REQUITEIMENLSc.ccuevueiiiiiiiiiie st
14.6.4 Personalization REQUITEIMENTS...........c..ccueuiiueiieeiieesie e seesaesteesie e sseesseestaesaeesaeeaesnees
14.6.5 Minimum PSAM ReQUITEMENTEScc.cccuveiiueiiiiieiieesiitesie ettt site ettt
14.7 CRYPTOGRAPHIC REQUIREMENTS ...c.ciuiiuiiitiiiiiiinitiisis st
14.7.1 Verifying a Certificate - General ReQUITEMENLS............c.ceoveveeiiriiiiinieeeee e
14.7.2 Authentication of the PIN Pad PUDIIC K€Ycccccoouioiiiiiiieiiiiiie e
14.7.3 Authentication of the PSAM PUDBLIC K€Yc.cccoooviiiiiiiiiiiiieieiie e
14.7.4 DES QNA TYIPIE DESc.ooiee sttt st ne e s et e steesaeenaeanees
14.7.5 ENcryption and DECIYPLIONc..ccueccueceeieriesieesiessessasseessaesteesieessesseesseessaesseeseessnsnes
14.7.6 MAC COMPULALIONcceeeiiiiieeiie ettt ettt e sbe et e e nbee et
14.7.7 RSA OPEIALIONS.cccuviiiiii ittt sttt ettt ettt ettt et e et e et e e nbe e et
14.7.8 RSA PAAAING ...t bt
14.7.9 CertifiCate FOTINALSc.coooiiiiiiiieii ettt sn e
14.7.10 ExXpiration of CErtifiCatescccouviiimiiiiaiiiiie ittt
14.7.11 Replacement of Keys and CertifiCates...........ccouvuiiiiiiiaiiiiiieieiene st
14.7.12 Revocation Of CertifiCatescoouuvmiiiimiiiiaieiiie sttt
14.7.13 KEY LENGURAS ..ot
14.8 PIN PAD-LESS SECURE CRYPTOGRAPHIC DEVICEcoviuiiiiiiiiiiiiiiiiin s
R 4) 0] N 0 0]) cE
14,10 MESSAGE CODES ...cuvitiiitiitiitisisie ittt
15. DATA ELEMENTSooiiiiii et e
15.1.1 AIDN woiioteeeee e
15.1.2 ALG ..ot s
15.1.3 ALGH ..ot s
15.1.4 Amount Confirmed INAICATOTcccoouiiiiiiiiiiei e
15.1.5 Application Status Words (ASWI1, ASW2)cuuoueieiieiieeiieiie e seese e eie e ssaeseeens
15.1.6 ATR (ANSWET TO RESEL) ...cvveee e et sttt et e stestae st te e te e ae e sneesneenne e teanaesneesnaenseens
15.1.7 [C-APDUL ..ottt
15.1.8 Card COMMUOANG.........ccooiieiiiiee e
15.1.9 CATA RESPONISE ... eeeeie e e ettt ste st et e s e s e s teesteesteaseesneesneesteenteenteaneeaneenreens
15110 CHALLENGE ..ottt
15.1.11 CLA (ClASS DYTE) ..ottt sttt s et ne st et ste e teasae e sneesaeenteanaeeneenneenreen
O A 0 U Y PSPPSR PSP

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

vi
TAPA Application Architecture 3.0
I5.1.13 CINTSUBADDRESS «e-vevvsrereesessersesessessisessensiseasessesessessssessessesessesnesessesnessssesnesesesnesnesesnessesesnennens 205
15.1.14 Code TADIE INAEXcoocviiieiiiiieieeee et 206
15.1.15 CSN (Certificate Serial NUMDEI)ccccioueiueiiieii it 206
15.1.16 CURR (CUITEICY) ceveiueeeeineeseesteesisesiaesiesstesteestaesteesteasaeasessseesseesseanseansesssesseesteestaesansnensnes 206
15.1.17 CURRC (CUITENCY COUR)cccveeresireiieniesieesieeseesieetesneesneesaeesteantaentesnenssaesteesteesaeeneesnees 206
15.1.18 CURRE (CUITENCY EXPONENL)cuvecuveriieiieeiiesiiesieeseeaeseesneesteestaataanesnaesnaestaestaesanenensnees 206
15.1.19 Destination Address (DAD)cccccuuiuiieiieiieeiiesiesiessieeseeseenie e ssee e sreesteesaeeeesnees 207
15.1.20 DS (Digital SIGNALUTE).......ccoeiuiiiiiiiieiie sttt 207
15.1.21 DTHRppa (Transaction date and tiMe)cceveuevivireiiesieeseese e sesee e e e neesnees 207
15.1.22 ENC(KSESPIN)[PIN]cooiiiiiiiiiiiie ettt 207
15.1.23 ETror ReSPONSE DALccocoveiieiraiieiiesieseesee e aae e sreesteesteateenaesnaessaestaesteesaeeneesnees 207
15.1.24 EVENE TYPE COUEccueeeeeieesereer e etesiee e e et ste e steete e teenaesnaenteenteesaeeeeaneas 208
15.1.25 EVENE LOCALION.........ocvieiieiiiiiiieeieee et 208
15.1.26 File Identifier (IDFILE) ..o ouuoeieeeeeeae sttt st 208
I5.1.27 FHIET ..ot 208
15.1.28 FOIMQAE COUEocovveiieiieeieiieeeee et 208
15.1.29 Handler Category AAdATesscccuviiiiiiiieieieie sttt 209
15.1.30 Handler SUD-AAAIesS..........c.cuioiiiiioiiiiiie et 209
15.1.31 D LRy 0 Lol T 23 =SSO 209
15.1.32 IDpp (PIN PAQ ID)ccviieiiiiieeeeeeet ettt 209
15.1.33 IDppcreator (Identifier for the Creator of a PIN Pad)cccccoouviiviiiiiieiencncieiee 210
15.1.34 [Dpsam (Identifier for @ PSAM)ccccuoiiiiiieieiiieie et 210
15.1.35 IDpsamare (TAPA PSAM Application Identifier)ccccoceveneiiiiiiniiieiieeee e 210
15.1.36 IDpsamcrearor (Identifier for the Creator of the PSAM)ccccovvviviiiiiiiiieniicneees 210
15.1.37 IDscueme (ACQUIrer reference NUMDBET)ccoiiiiiiiiiieiieeeese e 211
15.1.38 INS (INSEIUCLION DYLE) ..ot se s e ettt et esreesteenteeaeeneeanees 211
15.1.39 KCV (Key CRECK VIALUE)c.ccovesreeireiieie e st se st et ate e snae st staesae e snees 211
I5.1.40 KEKCDP.woveieeeeieeieeeete ittt 211
15.1.41 K@Y DALQevevesiee ettt sttt ettt et sttt ne e sne e steenbe e s e eneenneentaenteeneeenneanes 211
I5.1.42 KEYCDP eiuiieiiie ettt 212
T5.1.43 KSES ..ot 212
I5.1.44 KSESCDP cvviveeeiueieeeeti ittt e 212
I5.1.45 KSESINIT e oeeeeite ettt 212
I5.1.46 KSESMAC.« e viereeeatereeeste sttt 212
I5.1.47 KSESPIN .t ieeeite ettt 213
15148 Lo (DAEA IENGER) ... 213
15149 Le (Expected data IeNGLh)ccocooioiiiiiiiieieiie e 213
15.1.50 Lpara (Data field IeNGth)............cccooiiiiiiiiiiiiieieiie et 213

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

vii
TAPA Application Architecture 3.0
I5.1.51 LEN oo 213
I5.1.52 LENAIDN e oveeieeeeeeete ettt 214
T5.1.53 LENREC it ieeeie ettt 214
I5.1.54 LENSKEY...iieoeieieeeete ittt 214
I5.1.55 LONGEA....cciiiiiiiicee e 214
15.1.56 LPKE (Length of a Public Key EXPONENL)ccccceiviiiiiiiaieiiiene e 214
15.1.57 LPKM (Length of Public K&y MOAUIUS)ccccouviriiiiiiiiiaieieie st 215
I5.1.58 MAC ... 215
15.1.59 Magnetic Stripe DALAc.ccccoueiuiiiiiiiii et 215
15.1.60 MESSAQGE COUEc.oocuiieiieiiiiiieieeeee ettt ar bbbt 215
15.1.61 MESSAGE DALA ... bt 215
15.1.62 MESSAGE TYPE ...veveeneeeeiie ettt h bbb bbbttt 216
15.1.63 NUMFILE ..ottt 216
15.1.64 PAA PALEEIT ...ttt 216
15.1.65 PK (PUDIIC K@Y)oveieieeii et eet ettt sttt ettt ate e teanae st e ntaenteenaneneeanees 216
15.1.66 PKC (Public Key CertifiCate)ccooumiimiiiiiaieiiienie sttt sttt 216
15.1.67 PKM (PUblic K€y MOAUIUS).........c.cccueiiieiiiieiiesieesesieseeseestaestsenteenaesnaesseesnaestaesaneensnees 217
15.1.68 PKR (Public Key ReMAINAET)cc.ccueieiieiieiieseeiiesesseesteesteenie e ssaessaesaeesteesaeeeesnees 217
15.1.69 PI1, P2 (PArameEter DYLES)ccceiuesieieaiesiieseeseestesaesneesseesseesseansesssesssssseesseesseessnssensnees 217
15.1.70 POINtEr OFI@NEALIONcveevieiieeeeiiieeeet et 217
15.1.71 MESSAGE COUE ... bt 217
15.1.72 PIN PAd IA@NELIfIETcouiiiiiieii ettt 218
I5.1.73 P e 218
15.1.74 PSAM IACNLIfIEYc.voviiiiiieiieiieeeee ettt nr s 218
15.1.75 PSAM SUD-QAAIESSocovivieieiiieiiiiece ettt 218
15.1.76 RECOIA DALA........oouieiiiiiieeeteeeee ettt 218
15.1.77 RECOIA POINTETc.eceiiiieeeiiiecet ettt 218
15.1.78 RECOTA TAG .oevvveveeeee ettt bbbt near s 219
15.1.79 ReSPONSE COAE (RC)ueceiieiieesii et et eiestie st s e te e sae e te e e enaeenee st e steesteenaeeneennees 219
15.1.80 RESPONSE DALAoceveeeieesiiesie e et etestee st te e te e s sneesaeenteenteanteanaesseesteenteenaeeneeanees 219
15.1.81 REEUINEA SETING ... bbbt 219
15.1.82 RIDpsam (Registered Identifier Of The Entity Assigning PSAM Creator Ids) 219
I B B To | o 1 1 2SSOSR 220
15.1.84 SESSION DALA ...ttt 220
I B R Y QN1 L= =3 OSSR 220
15.1.86 SoUIrce AAAress (SAD).........ccououiiiieiiieiieie e seesieese e sae st nte e e sreesre e teenaeeeeanees 220
15.1.87 Status Words (SW1, SW2) ... eeeeeeeseseeseese e see e steesteantaanaesnassseestaesteesaeeensnees 221
15.1.88 ID7HReaD (Thread IAENLIfIEr)cooiiiiiiiiiieeee e s 221

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

viii
TAPA Application Architecture 3.0
15.1.89 7 L= 221
15.1.90 TiMET FIAG «..oeviiviieeeeeee ettt bbbt 221
15.1.91 W7 ol Q) D e L e B 221
15.1.92 TraANSACLION AMMOUNLvveeeeeiiieeeeee e et eetee e et e e et e e e eeaaee e s sabe e e s sbae e e sesteeeesnres 222
15.1.93 TrANSACLION ROSUILS..........cveeeeeerie ettt et e et e e s e e s s aae e e satee e e eares 222
15.1.94 S 222
15.1.95 VKPCA, x5t evvveesveeinneesreesteeste s steessbe e ssteessbeessteessbeesnteesabeesateessbeesaeeesnbeeanteenabeeanteeanteeanneennneeans 222
BT X 00 20)04 T 223

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

iX
TAPA Application Architecture 3.0
LIST OF TABLES

TABLE 1: ROUTER RESPONSE CODES ...vveuvveuteesteeseraseessesssessssesseasseassesssnssessseessnsssssnssssesssessssenseessenssessssssesssesssnssesnees 12
TABLE 2: HANDLER ADDRESS ASSIGNIMENTS ... vveuteeseesseesseesssessasseassesssessesssessssssssasssssesssessssenseensenssesssessesssesseessesees 14
TABLE 3: TERMINAL IMESSAGE FORMATvtiiutiieutieiteeeieessteeebeeasbeeebee st e st e st e st e s ke e nbe e e beeebe e e beeebe e e nbeeenneeeees 17
TABLE 4: TERMINAL MESSAGES, HANDLERS 0-2euviiveiiueiitreieeieesiesseesseesteeseneeesseesseesseesssenseessesssessenssesssessensnessnees 19
TABLE 5: TERMINAL MESSAGES, HANDLERS 35eiuviiueiiuiiitrestieieesiesseestaesteestneaesnaesneesseessaenseensesssesssessesssnssensnensnees 20
TABLE 6: TERMINAL MESSAGES, HANDLER 67 ... veiuviiveiiueistresteesieasiesseesseesteesenesaesssesseesseesssanseensesssesssessesssesssnsneesnees 21
TABLE 7: GET HANDLER ADDRESSES COMMAND ... ce.vvevveseeseresseesseassesssesseessesssnssssssssssesssessssensesssenssesseessesssessensessnees 23
TABLE 8: RESPONSE TO GET HANDLER ADDRESSES COMMAND.......uvvestesseeeeeseeesenesenaseessessseesssenseessesssssseessesssesssnsneesnees 24
TABLE 9: RESPONSE CODES TO GET HANDLER ADDRESSES COMMANDcveuvvereeeseneseraseesseessnesssenseessessssssesssesssessensneesnees 24
TABLE 10: OPEN HANDLER COMMANDeuteesteeseraseeasessseesssessesseassesssnssssssesssnssssasssssessssssssenseensenssesssessesssesssesensees 25
TABLE 11: RESPONSE TO OPEN HANDLER COMMAND......c.vviererteeseeaseesseesseesseessnesenasesssesssessssensesssesssesssessesssessseseesnees 26
TABLE 12: RESPONSE CODES TO OPEN HANDLER COMMANDveeuvrestesseeseeesenesenesenasesssessseesssenseessesssesseessesssesssnseesnees 26
TABLE 13: CLOSE HANDLER COMMANDeuvvesteeseeaseesseesseesssenseesssassesssnssesssesssnssssssssssessssssssenseensenssesssnssesssessenssnsnees 27
TABLE 14: RESPONSE TO CLOSE HANDLER COMMANDvvierenteesseassesseesseesseessnssssasssssesssessssenseensesssssssessesssesssessesnees 27
TABLE 15: RESPONSE CODES TO CLOSE HANDLER COMMANDeeuvieevessieseeeseeesenesenaseesseesseesssenseessesssesseessesssesssnsensnees 28
TABLE 16: WRITE HANDLER STRING COMMANDe.uveveeseeeseresseesseassesssessessseessessssssssssesssessssenseessesssesssessesssesssessesees 29
TABLE 17: RESPONSE TO WRITE HANDLER STRING COMMAND.......uvtesveeseeseeeseeesenesenasssssesssessssenseessessssssesssesssessenseesnees 30
TABLE 18: RESPONSE CODES TO WRITE HANDLER STRING COMMANDevverteesereseraseesseesseesssenseessesssessesssesssessensneesnees 30
TABLE 19: READ HANDLER STRING COMMANDveuveseesseeseeeseesseassesseessaesseessnesssssssssesssessssensesssssssessssssesssessenseesnees 31
TABLE 20: RESPONSE TO READ HANDLER STRING COMMANDvveutiestesseeseeesteesenesenaseessessseesssenseessenssssseessesssesssnsneesnees 32
TABLE 21: RESPONSE CODES TO READ HANDLER STRING COMMANDeuvveeieeeeinesensseesseesseesssenseessesssessesssesssessensseesnees 33
TABLE 22: HANDLER-INDEPENDENT COMMANDS. ...c..vevveseeseeesseesseassesseesseesseessnssssssssssessssssssenseessenssesssessesssesssnsessnees 34
TABLE 23: READ MAGNETIC STRIPE COMMANDvevveveesseesesesseesseassesssesssssseesseesssssssssesssessssenseessesssesssessesssesssnseesnees 40
TABLE 24: TRACK ASSIGNIMENT ..tutteiuteteuteesstesasseessteesssesssteeasseesstseansessstseansessstsssnsessssesansesssssesnsessnssesnsessssesensensnsns 41
TABLE 25: CLEAR TEXT RESPONSE TO READ MAGNETIC STRIPE COMMANDevveereeesereseesseesseessseseessesseessesssesssessenseessees 43
TABLE 26: ENCIPHERED RESPONSE TO READ MAGNETIC STRIPE COMMANDvveutverereseesneesseessneseessenssessenssesssessenseesnees 43
TABLE 27: RESPONSE CODES TO READ IMAGNETIC STRIPE COMMANDvveuvieieeineseeaseesseesseessseseessesssessesssesssessensseesnees 44
TABLE 28: WRITE MAGNETIC STRIPE COMMAND. ... vevvesseeseeesesesseaseesseesseesseessessssssssssesssessseensesssesssesseessesssessenssesees 45
TABLE 29: RESPONSE TO WRITE MAGNETIC STRIPE COMMAND.vtevvesteseeeseeesenesenaseessessseesssenseessesssesseessesssessseseesnees 46
TABLE 30: RESPONSE CODES TO WRITE MAGNETIC STRIPE COMMAND.evvverteeseeeseeaseesseesseessseseessesssessesssesssessensneesnees 47
QY- T 3 R o 0o 1LY 1Y 7Y o SR 50
TABLE 32: RESPONSE TO ICC COMMANDceutteauteessteessteesteeasseessbeessseesbeeasseesbeesnbeesbeeesbeeebeeebeeebeeebeeebeeenseeeens 51
TABLE 33: RESPONSE CODES TO ICC COMMAND ...ttt stee et s sbeeebeesbee st e st e s b e s ke esbe e e be e e b e e beeebeeebeeenbeeenees 51
TABLE 34: |CC POWER-ON COMMANDeuvtertreeraseessessseesssesseasseassesssesseessessssesssasssssesssessseenseesseassesssessesssesssnseesees 52
TABLE 35: RESPONSE TO ICC POWER-ON COMMANDcuvvitreseeaseraseesseesseesseessnessnaseessessseesssenseessesssesseessesssesssnseesnees 53

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

X

TAPA Application Architecture 3.0

TABLE 36: RESPONSE CODES TO ICC POWER-ON COMMANDveuvetitireesesteeesessessesessessesessessesessessesessensessssessensssensenes 53
TABLE 37: ICC POWER-OFF COMMANDteesteentiannesseeanesaneesseessesssesseesseesmeesnesnessnsasesaseeaneereesneansenneenreesreennesnnesnnss 54
TABLE 38: RESPONSE TO |CC POWER-OFF COMMANDvtvvttteseeteteseesesseseesessessesessessesessessesessessesessensessasessensssensenes 54
TABLE 39: RESPONSE CODES TO ICC POWER-OFF COMMANDvttteeesesteseesesseseesessessesessessesesseseesessensessssessenessensenes 55
TABLE 40: |CC QUERY COMMAND.utttiuritireesressbeesres s sressbe s sb e e s be s b e s b e s b e e s be s s b e e e be s e b e e e be s nb e e s ne e e be s e ne e n s 56
TABLE 41: RESPONSE TO ICC QUERY COMMAND.......c.utitiuriisteesresssreessesssreesne s snessne s sbe s s b s sr e s sne s sn e nne s nnessne s nes 56
TABLE 42: RESPONSE CODES TO ICC QUERY COMMAND......ceuviiiritiriesresssreesnesssnessne s sressne s sreesnne s sneesnne e sneesnessns 57
TABLE 43: VERIFY OFFLINE PIN ENCIPHERED, COMMAND ... cvtttseeteteeesestesesessessesessessesessessesessessesessensessssessenessensenes 58
TABLE 44: VERIFY OFFLINE PIN PLAINTEXT, COMMANDtstetttesteteteseesesseseesessessesessessesessessesessessesessensessssessenessensenes 58
TABLE 45: PLAINTEXT RESPONSE TO VERIFY OFFLINE PIN COMMANDceutitireiiiitiierenteneesesieseesesseseesessessesessessenesseneenes 60
TABLE 46: ENCIPHERED RESPONSE TO VERIFY OFFLINE PIN COMMANDvtviriiiiitiiesesieneeiesie e seesesne s sne s nnens 60
TABLE 47: RESPONSE CODES TO VERIFY OFFLINE PIN COMMAND.c.vtitetiiteeetesteiesestesteseste s e s s s ssenesneneens 61
TABLE 48: CARD HANDLER COMMANDSvvvtarestestestesseaseeseesseseessessesseasseseessenteabesbeabeabeeseenbenbeaneabeabeebeeseenrennennenne e 62
TABLE 49: DISPLAY IMESSAGE COMMANDviutistestiteaseeseeseesessessestesseesseseenseseeabesbesbeabe e e esbenbeaneabesbeebeeseenreneenne e e 63
TABLE 50: RESPONSE TO DISPLAY IMIESSAGE COMMANDvvtateseeteteseesessessesessessesessessesessessesessessesessensessssessensssensenes 64
TABLE 51: RESPONSE CODES TO DISPLAY MESSAGE COMMANDvvuvireeseteseesesseseesessessesessessesessessesessensessssessensssensenes 65
TABLE 52: PRINT IMESSAGE COMMANDvttatestesttstesseeseeseessessesse st sbeeseeseensenbeabesbeabeabeeseesbenbeabeabeabeebeeseesnenenne e e 66
TABLE 53: RESPONSE TO PRINT IMESSAGE COMMANDc.vtstteteseeteteeesesteseesesseseesessessesessessesessessesessensesessensenessensenes 66
TABLE 54: RESPONSE CODES TO PRINT MESSAGE COMMANDvvteateseesesteseesesseseesessessesessessesessessesessessessssessenessensenes 66
TABLE 55: CONFIRM AMOUNT COMMANDc.vtsteateteteaneeseessessessessesseaseeseensesssasesbesseaseeseensesseaseabeaneasesseesseneenneneesns 68
TABLE 56: RESPONSE TO CONFIRM AMOUNT COMMAND.ttteseteateeesesseseesesseseesessessesessessesessessesessensessssensensssensenes 68
TABLE 57: RESPONSE CODES TO CONFIRM AMOUNT COMMANDccuvtseeteteseesesseeesessessesessessesessensesessensessssessenessensenes 69
TABLE 58: PURGE PRINT BUFFER COMMAND ... cttttseeteteseetesteseesessesessessessesessessesessessesessessessssessesessensessssensenessensenes 70
TABLE 59: RESPONSE TO PURGE PRINT BUFFER COMMAND.......c.vtutetetiseesesteeesesseseesessessesessessesesseseesessessessssessessssensenes 70
TABLE 60: RESPONSE CODES TO PURGE PRINT BUFFER COMMANDcuvetitereetesteseesesteseesestessesesseseesessessesessessenessensenes 70
TABLE 61: GET KEY CHECK VALUE COMMAND ... cvtttseeteteseetesteseesesseseesessessesessessesessessesessessesessessesessensessssensensssensenes 72
TABLE 62: RESPONSE TO GET KEY CHECK VALUE COMMANDvvvtiateeeseateseesesseseesessessesessessesesseseeseasessesessensenessensenes 73
TABLE 63: RESPONSE CODES TO GET KEY CHECK VALUE COMMANDvvtiveseesesteseesesteseesessessesesseseeseasessesessessenessensenes 74
TABLE 64: GET PIN PAD PUBLIC KEY RECORD COMMANDvvvireetiteeesesteseesesseseesessessesessessesesseseesessessessssessenessensenes 74
TABLE 65: RESPONSE TO GET PIN PAD PUBLIC KEY RECORD COMMAND ...c.vtvviitirieseteeenestessesesseseesessessesessessenesseseenes 75
TABLE 66: CONTENTS OF PIN PAD CREATOR CERTIFICATE RECORDvtuviteteseeiesteeesesteseesesteseesesseseesessessesessessenesseneens 75
TABLE 67: CONTENTS OF PIN PAD CERTIFICATE RECORDvvtveseeteteseesesteseesesteseesesbestesesbessese s neeseanensesesseseenesneneens 76
TABLE 68: RESPONSE CODES TO GET PIN PAD PUBLIC KEY RECORD COMMAND........c.vevevirieneteeenenieneesesseseesessessenesseneenes 76
TABLE 69: VERIFY PSAM PUBLIC KEY CERTIFICATE COMMAND (PKCACQ) - +++++vveerrereireanieesireanieessireenieessiresnseessieesnsessnens 77
TABLE 70: RESPONSE TO VERIFY PSAM PUBLIC KEY CERTIFICATE COMMANDccvtseteteseesesteseesesseseesessensesessessenessensenes 78
TABLE 71: RESPONSE CODES TO VERIFY PSAM PUBLIC KEY CERTIFICATE COMMAND «...covtvvtetineenesteseesessessesesseseenesseneens 78
TABLE 72: SUBMIT INITIAL KEY COMMANDceuviatiititieieeseeeese st sne bbb e e et ab ket ebe et an bbb e e s e e nn e e e 80
TABLE 73: RESPONSE TO SUBMIT INITIAL KEY COMMANDcvitireeteteniesesteseesesseseesessessesessessesesseseesessessesessessessssensens 82

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

Xl

TAPA Application Architecture 3.0

TABLE 74: RESPONSE CODES TO SUBMIT INITIAL KEY COMMAND........cvtreeresteeeiesteeesestessesestessesesseseesessessesessessesesseneenes 82
TABLE 75: FORMAT OF DATA RECOVERED FROM DSviviiiiiiitiieiiste ettt ettt sttt 83
TABLE 76: CONTENTS OF THE DS HASH ...cvtevtittte sttt sttt b e bbbt nenne e 83
TABLE 77: INITIATE PIN ENTRY COMMANDvtuviteteseetestestetesteseesesteseesesseseesessessesessessesessesseseaseseesessessessssessensssensenes 84
TABLE 78: RESPONSE TO INITIATE PIN ENTRY COMMANDctttirvetiteeesesteseesesseseesessessesessessesesseseesessessesessessenessensenes 86
TABLE 79: SCD SESSION KEY DERIVATION ...vvtuvtstestetesteeseessessessessessesseeseeseessessessessesseasesseessesseanessesneesesseesseseensensens 86
TABLE 80: CDP KEY DERIVATIONvtttesteteateeesesteseesesseseesessessesesseseesessessesessesseseasessesessessesessessesessensessssensensasensenes 87
TABLE 81: RESPONSE CODES TO INITIATE PIN ENTRY COMMANDvvviivititisieresteneesesteseesestessesesseseesessessesessessenesnennens 87
TABLE 82: GET PIN COMMAND ...ce.vtteteetteteteste sttt ese et sh et she b e e e b e btk e bt e b e e e et e b e ab bt eb e eb e e se e s e e e nne e e 88
TABLE 83: DEFINITION OF PIN BLOCK FORMAT w....vvuttsteteteseetesteseesesseseesessessesessessesessessesessessesessessesessensessssessensasensenes 88
TABLE 84: RESPONSE TO GET PIN COMMANDc.vetitiiieiteeete st sne sttt et sttt ebe et an bbb nnenne e 89
TABLE 86: RESPONSE CODES TO GET PIN COMMANDcuvivttitisietesteneesesteseesessessesesbessesesbessesesseseesesnessessssessensssensens 90
TABLE 87: TERMINATE PIN ENTRY COMMAND. ...c.cettttteetteseetestesse st sbeesee et sne bbb et an b sbeabeeseenneneenne e e 90
TABLE 88: RESPONSE TO TERMINATE PIN ENTRY COMMAND.cuvetetireeresteeesesseseesestessesestessesesseseesessessesessessesessensenes 91
TABLE 89: RESPONSE CODES TO TERMINATE PIN ENTRY COMMAND........cevtiuereerentieesenteeesestessesesseseesessessesessessesessensenes 92
TABLE 90: USER INTERFACE-SPECIFIC COMMANDS. ... vtttesteteteseesesseseesesseseesesseseesessessesessensesessessesessensesessensensasensenes 92
TABLE 91: GET AMOUNT COMMAND ...c.vsveteateseetesteseeseeseseesessesseseaseseesessessesessessesessessesessessesessessesessensessssensensasensenes 94
TABLE 92: RESPONSE TO GET AMOUNT COMMANDttavtsteteteseetesteseesesseseesesseseesessessesessessesessessesessensessssessenessensenes 96
TABLE 93: RESPONSE CODES TO GET AMOUNT COMMANDcvsvteateeesesteeesessessesessessesessessesessessesessensessssensenessensenes 96
TABLE 94: GET AMOUNT ENHANCED COMMANDvtsvttteseeteateseesesseseesesseseesessessesessessesessessesessessesessensessssensensasensenes 97
TABLE 95: RESPONSE TO GET AMOUNT ENHANCED COMMANDvvvuviseeteteeesesteseesestessesessessesesseseesessessesessessenessensenes 98
TABLE 96: RESPONSE CODES TO GET AMOUNT ENHANCED COMMANDvcuvirvteteseesenteseesessessesesseseesessessesessessesessensenes 99
TABLE 97: TRANSACTION COMPLETED COMMAND ... vttateseeteteseesessesessessessesessessesessessesessessesessessesessensesessessenessensenes 99
TABLE 98: RESPONSE TO TRANSACTION COMPLETED COMMANDteuvreteteseetesseseasesseseesessesessessesessesseseesesseseesesseneas 100
TABLE 99: RESPONSE CODES TO TRANSACTION COMPLETED COMMANDc.vvvateteneresteseetessesessessesessessesessessesessesseseas 100
TABLE 100: FUNDS AVAILABLE COMMAND........ceesteesteesresseesnessneesneesseessessseaseesseessessmeesnessnsssnssmesaneenneensesnnesnnessessneens 101
TABLE 101: RESPONSE TO FUNDS AVAILABLE COMMAND.ttveretesteseetesseseesesseseesesseseesessesessessesessessessasessessasesseneas 102
TABLE 102: RESPONSE CODES TO FUNDS AVAILABLE COMMAND......cevereatestereetesseseesesseseesessesessessenessessessesessessesesseneas 102
TABLE 103: MERCHANT APPLICATION HANDLER-SPECIFIC COMMANDScvuvererereseerenueeetessesessessenessessesessessesessesseneas 103
TABLE 104: ICC COMMANDS SUPPORTED BY PSAM HANDLER ... ccttitereaterterietesteseetesteseetesteseetessesestesseseesessesessessesens 105
TABLE 105: RESPONSE CODES APPLICABLE TO PSAM HANDLER.......cctittriatiiteietesiesieiesteneetestesestesseseetesbeseetessesessesnenens 110
TABLE 106: CLA/INS BYTE DEFINITIONS.c.vtutertestestesueeseessessessessessesseeseessesesbessessesseesse s ensesbesnesbesseeseeseennennesnennes 112
TABLE 107: APPLICATION-INDEPENDENT PSAM COMMANDSvvvitereatesteeetesteseesesueseesessesessessesessesseseesessesessesseneas 113
TABLE 108: SUCCESSFUL RESPONSE TO PSAM APPLICATION COMMAND.c.vvvteveneresteseerestesessessesessessesessesseseesesseseas 114
TABLE 109: ERROR RESPONSE TO PSAM APPLICATION COMMANDc.viurianrinresseesteesreesnesnessessnessneesneenneannesnnenneenneens 115
TABLE 110: APPLICATION STATUS WORDSc.veeureesteesresseesnessneesneesneessesssesseesseesmeesnessnessneasessmesaneenneenneannesnnesneenneens 115
TABLE 111: START-UP PSAM COMMANDceuteiteetesreseessessmessseesseesresssesseesseesneennessnessneanesamesaneenneenneannesnnenneenneens 116
TABLE 112: START-UP COMMAND RESPONSEveesteenresseisnessneesneesseessesssessresseessessressnessnsssessnessneenneensesnsesnnessessneens 117

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 Xii

TAPA Application Architecture 3.0

TABLE 113:
TABLE 114:
TABLE 115:
TABLE 116:
TABLE 117:
TABLE 118:
TABLE 119:
TABLE 120:
TABLE 121:
TABLE 122:
TABLE 123:
TABLE 124:
TABLE 125:
TABLE 126:
TABLE 127:
TABLE 128:
TABLE 129:
TABLE 130:
TABLE 131:
TABLE 132:
TABLE 133:
TABLE 134:
TABLE 135:
TABLE 136:
TABLE 137:
TABLE 138:
TABLE 139:
TABLE 140:
TABLE 141:
TABLE 142:
TABLE 143:
TABLE 144:
TABLE 145:
TABLE 146:
TABLE 147:
TABLE 148:
TABLE 149:
TABLE 150:

GET SUPPORTED AIDS COMMAND ...e.uttietteetrtesieeestrtessseestseessseessseessseessseessseesssesssseesssesssneessseesneessnes 118
RESPONSE TO GET SUPPORTED AIDS........utiiiutiiinieesiiesieesitessteessbeesstessnbeessbeessbeesnbeesnseesntessnsessnseesnneenns 118
PSAM SHUTDOWN COMMAND.ceetutteisteesuteessteessseessteesssessssessssessssessssessssessssessssesssesssesssessssesssseesns 119
RESPONSE TO PSAM SHUTDOWN COMMAND ...vvevvesteestresseasseassesseessessseesssssssssesssessseesseessesssesssessesssenns 120
GET INEXT COMMAND ...t tteesteeseesseeseeesseesteesteessesssesseesseesseeseeasseasessnessseeassenseanseansesssnssenssesssenssnnsensnees 121
RESPONSE TO GET NEXT COMMAND «..vvtvteesuttessteessteessteesnseessseesssessssessssessssessssessssessnsessssesssesssessnessns 121
RESPONSE COMMAND ... uttstesstesteeseeeseeesteeseeasessseesseeseenseassesssesssessessseessnsssnssesssesssessseensennsesssensenssenns 122
SYNCHRONIZE PSAM/PIN PAD COMMANDvvivretrenteesiesseesseesseesenesenssesssessssesssensesssessesssesssesssessnsnees 123
RESPONSE TO SYNCHRONIZE PSAM/PIN PAD COMMANDecuvveeiesriesteeseneseneeesneessessseesssenseessesseessesssenns 124
ASW1-ASW?2 RESPONSE CODES TO SYNCHRONIZE PSAM/PIN PAD COMMANDceevverieneienieesineseneenanees 124
CREATE FILE COMMAND ceeuttittesueeseeesteeteenteassesssesseessaesseesaeaseeasesssessseesssenseanseansesssnssensseessesssnnsensnees 126
RESPONSE TO CREATE FILE COMMAND.tteuteseesseesseesseenseasseassesseessessseessnssssssesssesssessseensesnsesssessenssenns 126
RESPONSE CODES TO CREATE FILE COMMAND.ceuviiteeteesteasteeseesseesseesseesensssnssesssessseesseensesnsesssessesssenns 127
DELETE FILE COMMANDevtesttesteesteesteesaeaseessessseesseesseenseassesssnsseessesssesssnssssssesssesssessseensennsenssesseessenns 128
RESPONSE TO DELETE FILE COMMANDceutterteiseesneesteesteenseasseaseesseesseesseesensssnsnesssessseesseensesnsesssnsseessenns 128
RESPONSE CODES TO DELETE FILE COMMANDvvevvesteeteesteestesseeseeesseeseeesensssnssesssessseesseensesssesssnssesssenns 129
ADD FILE RECORD COMMAND ... eeuttesteeseesseesseesseesseesseassesseesseesseessnesssssesssessseesseensesnsessesssesssessseneesnees 130
RESPONSE TO ADD FILE RECORD COMMANDc.vveiueesteeteesseasseaseesseesseesseesenasssssesssessseesseensesnsesssessenssenns 130
RESPONSE CODES TO ADD FILE RECORD COMMANDvveutienteesteeseesseesteesenesensssesseessessseesseensesnsesssessenssenns 131
GET FILE RECORD COMMANDvviuviteesteesteesteestesssesseessaesseeseeassssnesssessssesssensesnsesssessesssesssesssesssessensnees 132
RESPONSE TO GET FILE RECORD COMMANDveuvveeeeseeesteenseasseaseesseessessseesenasssssesssessseessesnsennsesssessenssenns 133
RESPONSE CODES TO GET FILE RECORD COMMANDvveuvientresieesiesseesseesseesenassnsseessessseesseensesnsesssessesssenns 134
UPDATE FILE RECORD COMMANDttteuttietteestrtestseesiseessseestseessseestsesssssessseessesssssesssessnssesssessssssensesssns 135
RESPONSE TO UPDATE FILE RECORD COMMANDcceitretresteaseeaseesseesseesseesenassnssesssessseesseensennsesssessenssenns 136
RESPONSE CODES TO UPDATE FILE RECORD COMMANDeeuviesteesteseeesteesenesenaseesneessessseesssensesssesssesseessenns 136
FIND AND GET FILE RECORD COMMAND.ccuvtiiuttessttessteesstesssteesssessstessnsesssseesssessssessssessssesssesssessseenns 137
RESPONSE TO FIND AND GET FILE RECORD COMMANDvveutienieesiesseesteesenesenasensseessesssessssensesssesssessesssenns 138
RESPONSE CODES TO FIND AND GET FILE RECORD COMMAND........cverteeteesteeerasensseesseesseesseenseessesseessessenns 138
DELETE FILE RECORD COMMAND ...vceuvvesteesteeseesseesseesseesseenseassesssessesssesssesssnssssssesssessseesseensesnsesssesseessenns 139
RESPONSE TO DELETE FILE RECORD COMMANDc.vvetrerteenteaseeaseesseesseesenesenasssssesssessseesseensennsesssesseessenns 140
RESPONSE CODES TO DELETE FILE RECORD COMMANDvveuviesieesiesseesteesenesenasensseessessseesssessesssesssesseessenns 140
FIND AND DELETE FILE RECORD COMMANDveutieeuteessteesstesssteesssessstessnsessssessssessssessssessssessssesssessnessns 141
RESPONSE TO FIND AND DELETE FILE RECORD COMMANDvvevvveeeeseesseesenesenaseesseesseesseesseessesssesseesseessenns 142
RESPONSE CODES TO FIND AND DELETE FILE RECORD COMMANDc.vveuveeereenesensseessessseesssenseessesssesseessenns 142
CLEAR FILE COMMAND ...teuttteittesite ettt esiee ettt estee ettt esbteesbbtesbee e bbeenbs e ek eesbeeenb b e e nbeeenb b e e nbeeenb b e e nbeeenbbe s 143
RESPONSE TO CLEAR FILE COMMANDvvveiuttiisteessteessteesiteessteessbeesstesssseessteesssesssseesnsessnsessnsessnsessnessns 144
RESPONSE CODES TO CLEAR FILE COMMANDuttiiurieisieesreessteesstessstesssseesssessnsesssseesnsessssessssessnsessneenns 144
DATA STORE HANDLER SPECIFIC COMMANDSvvveuttessteesssesssteesssessssessnsessssessssessssessssessnsesssesssessnnessns 145

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

X

TAPA Application Architecture 3.0

TABLE 151: INITIATE COMMUNICATION SESSION COMMANDc.vvvteveseatesteeetesseseesesseseesessesessessesessesseseesesseseesesseneas 146
TABLE 152: RESPONSE TO INITIATE COMMUNICATION SESSION COMMAND ... cteuvesetesreeetessesessessenessessesessessesessesseneas 147
TABLE 153: RESPONSE CODES TO INITIATE COMMUNICATION SESSION COMMANDccvreatesueseatessenearessesessessesessessenens 147
TABLE 154: TERMINATE COMMUNICATION SESSION COMMANDcveuveseatesseseetesseseesessesessessesessesseseesessessesesseseesesseneas 148
TABLE 155: RESPONSE TO TERMINATE COMMUNICATION SESSION COMMANDvvvaveveearesteeetessesessesseseesessesessesseseas 149
TABLE 156: RESPONSE CODES TO TERMINATE COMMUNICATION SESSION COMMANDvvvevereatenteeeresteneesessesessessenens 149
TABLE 157: COMMUNICATION HANDLER-SPECIFIC COMMANDSctvereatesseseatesseseesesueseesessesessessesessessensesessessesesseseas 150
TABLE 1581 EVENT TYPES ...cetiteeutieureesresieesteestee e et s sme e me e me et an e as b e b e m e e n e sn e me e ame e ane e nn e e neanneennenneenre e 151
TABLE 159: ADD EVENT COMMANDc.uviteeteeteeteeeesseessessmeeane e s esseassesseenseenmeenne e nessneaneeameeaneenneeneanneannenneenneens 152
TABLE 160: GET EVENT COMMANDvitriieeteetee e ssee e s e smeeane s assesseenseesmeenme e nessne s e e ame s aneenneenneannennnenneenneens 153
TABLE 161: RESPONSE TO GET EVENT COMMANDvetttesietesteseetesteeetesteseetesteseetesaeseetesseseesesaeseesesseseesessesessesseneas 153
TABLE 162: RESPONSE CODES TO GET EVENT COMMANDcviveireereenrianresseesreesneesreesnesne s snessneenneennesnnesnnenneenneens 154
TABLE 163: FIND EVENT COMMANDcviieeteereeteanesses s smeesneesneesseassesseesseesmeenmeesneasneanesamessneenneenneanneannenneenneens 155
TABLE 164: RESPONSE TO FIND EVENT COMMANDc.uviiriiteisneesreesreesre s sseesreesmeesnessnesne e s smessneenneenneennesnnenneenneens 155
TABLE 165: RESPONSE CODES TO FIND EVENT COMMANDttveriatesteseatesteestesteseetesseseesessesessessesessessesessesseseesesseneas 156
TABLE 166: FLUSH EVENT QUEUE COMMANDuviiiiiieiirisireesinessree st e s sne s s ssneesane s ssneesane s ssneesane e 157
TABLE 167: RESPONSE TO FLUSH EVENT QUEUE COMMANDccuuviiiiriesirisirie s snee s sne e s sine s snessane e 157
TABLE 168: RESPONSE CODES TO FLUSH EVENT QUEUE COMMANDvvuvivieneentetesresiesieesseseene s snessesneeseeeenennesnennes 158
TABLE 169: EVENT HANDLER-SPECIFIC COMMANDSv.ttuveseteteseatesteeetesseseesesseseesesseseesessesessessenessesseseesessensasesseneas 158
TABLE 170: DATA ELEMENTS CONTAINED IN THE PIN PADcciiiiiiiiirieiieiieie et 175
TABLE 171: DATA ELEMENTS CONTAINED IN THE PSAM L...cuiiiiiiiieiiiie ettt ettt ettt sbe e sne e 176
TABLE 172: FORMAT OF THE ACQUIRER CERTIFICATE (PKCACQ) «-+verreerreesreemrenmrenieesieesreesnesneseesnessneesneenne e sneenneens 185
TABLE 173: FORMAT OF THE PSAM CERTIFICATE (PKCpsan) «eeeveeeesrsrrreessurreeissseeesisereesssnreessssesessseesssssseeesnsseesssees 185
TABLE 174: FORMAT OF THE PIN PAD CREATOR CERTIFICATE (PKCppe) «evevuvrreeiureeesiieieestireeseteeessteeeestveeesnnnneessnnes 186
TABLE 175: FORMAT OF THE PIN PAD CERTIFICATE (PKCpp) .eeeiveeeeiieiiieeiiin e e siiee e s siee e e ste e e st e e s snee e e sntve e e snnee e s nnnes 187
TABLE 176: LENGTH OF PUBLIC KEY IMODULUS. ...ttt ettt sttt sr st an bbb nnenne s 189
TABLE 177: SUMMARY OF RESPONSE CODES......c.veesteesressressessneesneesseasresssesseesseesseessessnessnssnessnessneenneenseasnessnssnessneens 191
TABLE 178 IMESSAGE CODES....c.tevtteueasteeessestestestesseeseese st abe sk e bt ese e e e b e b eb e e bt e bbb e e e b e b ab e e bt ebeebe e e enrennennenns 196
TABLE 179: CODING OF ALG ...vtutetieteeiietie ettt sttt h bbbttt bbbt bbb e e e bbbt bt bt e bt e e nennenn e 203
TABLE 180: SEARCH TYPE CODING «.uvvveeureseerestessessesseassesseasesbesse st sseeseese b et abeabe st as e s e b e beab et e e bt ebe e e ennennenre e 220

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

XIv
TAPA Application Architecture 3.0
LIST OF FIGURES

FIGURE 1: LOGICAL COMPONENTS OF THE TERMINAL ARCHITECTURE FOR PSAM APPLICATIONSvcvenvrieeierenieneeneneeneens 10
FIGURE 2: TERMINAL PSAM INITIALISATION ...uvvttirtestatensesessessesessessesessessenessessessasessensasessensesessensesessensesessensesessensens 37
FIGURE 3: EXAMPLE OF BYTES READ FROM IMAGNETIC STIPE.c...vtuveretistesesteteneatesteseesesteneesesteseesesteneesessessesessessesesseneene 42
FIGURE 4: EXAMPLE OF BYTES WRITTEN TO TRACK 3 ...vvtvirteueatestesestetesesteseeseasesseseesesteneesestesesessensesessensesessensesessensens 46
FIGURE 5: HANDLER TO PROCESSOR CARD INTERFACEvcuvvtatestesetestenesseseeseasesseseasestensasessensasessensesessensesessensenessensens 48
FIGURE 6: PROCESSOR CARD IMIESSAGE TRANSLATIONvcuvvtatestesetesseneaseseeseasesseneasessensasessensesessensesessensesessenseneasensens 49
FIGURE 8: PIN BLOCK FORMATcuttitiattateetieteste st st st st te e bt sb st he s e st eh e b bt eh et e b e b eb e ekt bt es b e e e nenbenne e 88
FIGURE 9: MESSAGE TRANSLATION FOR COMMANDS TO PSAM ..ottt neens 106
FIGURE 10: MESSAGE TRANSLATION FOR RESPONSE FROM PSAMcviiiiiiiiiiiiiiieiiniinieesie et neens 108
FIGURE 11: PIN PAD AND PSAM KEY HIERARCHYeiieiiiiiierisiee e sre e e nneenne e e nneenneens 161
FIGURE 12: PIN PAD/PSAM ENVIRONMENTS. ...c.vteuteutertessetessessesseeseessesesesssessesseasesseansessessessessessesseessessensensessenses 162
FIGURE 13: PSAM/PIN PAD INITIALIZATION ...utetteuteutetensestessessesseesseseesesssssessesseeseeseessessessenbesnessesseesnesenneneesnenses 164
FIGURE 14: SEPARATE PIN ENTRY AND AMOUNT CONFIRMATIONvtuverivereesesteeesesseeesessessesessessesessessesessessesessensenes 169
FIGURE 15: COMBINED PIN ENTRY AND AMOUNT CONFIRMATION ...cuvvtvereeresseseesesteneesessessesessessesessensesessessesessensenes 169
FIGURE 16: PIN ENTRY WITH NO AMOUNT CONFIRMATIONvtsvteteneesesteseesesseseesessessesessessesessessesessensesessessssessensenes 169
FIGURE 17: ONLINE PIN VERIFICATION ...vteurieuriasrenseesmeesieesnesssesseesmessneesneasness e aseesneesmeesnessnesnessnesaneenneennesnnesneenseens 171
FIGURE 18: SECURE CRYPTOGRAPHIC DEVICE ...v.vvuviseetetitetesteseesesteseeseste et sbeseese bbb s sbe e st ntes e anesnenesseneenes 173

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

1. Revision Log

Version | Date Affects Brief Description of Change
2.0 4/00 All Initial Publication
2.1 1/01 All Editorial revisions
Tables 16, Change description of SPyac field.
46, 52
6.1.1,6.1.2 Change example data for magnetic stripe read and write
6.1.2 Restrict writing to the magnetic strip to Track 3 only.
Table 66 Change label and description of LPKM field.
Tables 72, Fix lengths of fields
73,74, 81
Table 85 Fix Destination address, add SPyc field
Table 98 Add Synchronize PSAM/PIN Pad command
Table 105 Permit O (zero) AlDs.
Table 123 Clarify use of Pointer Orientation field
11.2.6.1 Clarify use of the Update Record command
Table 130 Add LENskey field
Table 149 Allow event type ‘01’ to be originated by the PSAM Handler
Figure 11 Add flow arrow for error case
Table 166 Set minimum key lengths to 1024 bits. Fix maxima for two keys. Add
warning regarding use of shorter keys.
Tables 58 Allow for multiple PIN Pad key versions
and 59
7.2.1.2,
14.5.4.3,
14.6.2,
14.6.2.1,
14.6.3,
14.6.3.1
Tables 60 Add response codes for PIN Pad processing.
and 167
7.2.5.3 Require that derived session keys have odd parity

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013 2

TAPA Application Architecture Version 3.0

Version | Date Affects Brief Description of Change

14534 Require that the RSA and padding operations be performed within the
protected devices

14.6.10.1 Acquirers are responsible for ensuring that expired CA public keys are
no longer used after they expire.

3.0 5/12 All Editorial revisions and functional enhancements.
Replace Tamper Evident Device with Secure Device.
Remove reference to Common Electronic Purse (CEP)
Updated figures and fonts

2.5.2 Replaced ISO/IEC 14443 with EMV Contactless Specifications for
Payment Systems — Entry Point Specification

Updated references to current versions

3.2 Compliance awareness with PCI Data Security Standards added
4.2.4 Add encrypted response for handler

4.3 Add encrypted commands

4.4 Specify keys to use for encrypted data.

6.1.1 Add enciphered magnetic stripe responses

6.2.2 Add enciphered commands

6.4 Reference to EMVCo contactless interface specification included
7.2.1.2 Clarifying which public key version to select if more than one match
7.2.1.3 Reference to table corrected

Table 60 Response codes removed

7.2.1.5 New requirement added

Table 68 Response codes added

7.2.5 KSEScpp added

7.2.4.2 Reference in step 5 corrected

New session key KSESpara added

8.1 A new Get Amount Command (get Amount 2) added to include EMV
field Amount Other

9 Note on discrepancies between ISO and EMV added

Table 109 Response codes added

14.1 Introduce PIN Pad less Secure Devices

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 3

TAPA Application Architecture Version 3.0

Version | Date Affects Brief Description of Change

14.3.1.5 SD requirements changed to allow for key entry of non-PIN data
outside payment application

14.6.2 Changed to reference the PCI PTS requirements, only

14.6.3 Changed to reference the PCI PTS requirements; redundant
requirements removed

14.8 Add Secure Devices in terminals without any PIN Pad
Table 176 New response code added: Transaction interrupt request
17 Add acronyms CDP and SD
3.0 10/13 all Limit copyright to Nets Denmark A/S
3.0 many Change Secure Device to Secure Cryptographic Device and acronym
SD to SCD

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

2. Document Overview

2.1 Purpose

The purpose of this document is to provide the information
necessary for a POS device manufacturer or application
developer to gain an understanding of the Terminal
Architecture for PSAM Applications (TAPA) for purposes of
creating multi-function applications.

2.2 Intended Audience

This document is intended for use by all technical staff
involved in the development, testing, operation, and
maintenance of one or more structural components of the
Terminal Architecture for PSAM Applications.

2.3 Included in this Document

Included in this document are:

e Overview of the Terminal Architecture for PSAM
Applications and a description of the individual structural
components comprising that architecture.

e Description of the general functional requirements to be
performed by each structural component.

e Description of the message formatting, addressing,
exchanging of messages between structural components,
and command sets used by these components.

e Description of the general message and error handling
procedures to be conducted within the terminal
application.

e Description of the terminal and PSAM initialization
procedures.

2.4 Not Included in this Document

Not included in this document are:

e Specifications already available in other documents, such
as the EMV specifications and I1SO standards.

e Scheme specific information related to business
requirements, design options, or implementation details —
including supported command sets, transaction data flows,
or user interface requirements.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

e Specific message formats or online communication
protocols used.

2.5 Reference Information

2.5.1 Requirement Numbering

Requirements in this specification are uniquely numbered with
the number appearing next to each requirement.

A requirement can have different numbers in different
versions of the specifications. Hence, all references to a
requirement must include the version of the document as well
as the requirement’s number.

2.5.2 References

The following documents are referenced in this specification:

1. Terminal Architecture for PSAM Applications, Overview,
version 2.0, April 2000.

2. ISO/IEC 7816-3: 2006, “Identification cards - Integrated
circuit cards with contacts - Part 3: Electrical interface and
transmission protocols".

3. ISO/IEC 7816-4: 2005, “Identification cards — Integrated
circuit cards with contacts - Part 4: Organization, security
and commands for interchange”.

4. EMV Contactless Specifications for Payment Systems —
V2.1, March 2011

5. ISO/IEC 9797-1:2011 “Information technology - Security
techniques - Message Authentication Codes (MACs) - Part
1: Mechanisms using a block cipher”

6. EMV, version 4.3, November 2011 “Integrated Circuit Card
Specification for Payment Systems” including later
bulletins

7. ISO/IEC 646: 1991, “Information technology - ISO 7-bit
coded character set for information interchange”

8. 1SO 8859-15: 1999, “Information technology — 8-bit single-
byte coded graphic character sets — Part 15: Latin alphabet
No.9”

9. ISO/IEC 7813: 2006, “Information technology —
Identification Cards - Financial Transaction Cards”

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

10. ISO/IEC 4909: 2006 “Identification cards — Financial
transaction cards — Magnetic stripe data content for track
3”

11. PCI SSC PTS, version 3.1, June 2011, “PIN Transaction
Security”

2.5.3 Command and Response Format Conventions

This specification adopts the following conventions for
specifying the commands and responses exchanged between
the terminal and PSAM applications. Commands and
responses have been extended to include plaintext as well as
enciphered commands.

PSAM Commands

For commands sent to the PSAM by the MAD-Handler, this
specification documents the entire set of ICC Command
Terminal Messages (Messages Type ‘42’, ‘46’and ‘47’),
including the embedded Command APDU, which is being
forwarded to the PSAM. To aid the PSAM developer, the C-
APDU portion is shaded. The document will, where applicable,
show the enciphered as well as the plaintext versions.

Commands requesting an enciphered response are identified
by the most significant bit of the sub handler address being
set, i.e. that 1000 0000b is added to the “normal” sub handler
address.

For commands sent to the PSAM that are generated by the
PSAM Handler, this specification documents the C-APDU,
which is generated by the PSAM Handler.

PSAM Responses

This specification defines the format and contents of the
Response Terminal Message (Message Type ‘FF’) received by
the MAD-Handler in response to a command sent to the
PSAM. The entire response message, excluding the Response
Code (RC) is sent to the PSAM Handler by the PSAM within a
response APDU. To aid the PSAM developer, the portion of
the response generated by the PSAM is shaded.

A detailed description of the message handling performed by
the PSAM Handler can be found in section 9.1. A description
of the PSAM application requirements is in section 10.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

2.5.4 Notational Conventions

Hexadecimal Notation

Values expressed in hexadecimal form are enclosed in single
quotes (e.g., ‘). For example, 27509 decimal is expressed in
hexadecimal digits as ‘6B75’.

Letters used to express constant hexadecimal values are
always upper case (‘A’ - ‘F’). Where lower case is used, the
letters have a different meaning explained in the text.

Binary Notation

Values expressed in binary form are followed by a lower case
“b”. For example, ‘08’ hexadecimal is expressed in binary as
00001000b.

Document Word Usage

The following words are used often in this document and have
specific meanings:

e Must

Defines a product or system capability that is required,
compelled, or mandatory.

e Should

Defines a product or system capability that is highly
recommended.

e May

Defines a product or system capability that is optional.
Notation used in the PIN Pad Cryptography section
@ represents the bitwise XOR function

SHA-1 (X) := the SHA-1 hash of X

SHA (X,n) := leftmost n bytes of SHA-1(X)

2.6 Document Organization

The document is organized as follows:
e Section 1 is the revision log.
e Section 2 provides an overview of this document.

e Section 3 provides an architectural overview of the
Terminal Architecture for PSAM Applications (TAPA).

e Section 4 provides information concerning the general

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

functional requirements of TAPA architectural
components.

Section 5 describes the processing requirements of the
Multi-Application Driver Handler.

Section 6 describes the processing requirements of the
Card Handlers.

Section 7 describes the processing requirements of the
User Interface Handlers.

Section 8 describes the processing requirements of the
Merchant Application Handlers.

Section 9 describes the processing requirements of the
PSAM Handlers.

Section 10 describes the requirements for TAPA-compliant
PSAM applications

Section 11 describes the processing requirements of the
Data Store Handler.

Section 12 describes the processing requirements of the
Communication Handler.

Section 13 describes the processing requirements for the
Event Handler.

Section 14 provides the requirements for the use of Secure
Cryptographic Devices and PIN Processing when a PSAM is
used in conjunction with a PIN Pad or with a Secure
Cryptographic Device, only.

Section 15 provides a listing of Response Codes that may
be generated.

Section 16 describes the referenced data elements.

Section 17 provides a list of acronyms

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

3. Architectural Overview

3.1 Introduction

This section provides an overview of the Terminal Architecture
for PSAM Applications (TAPA) and outlines the general
functional and processing requirements that this architecture
is intended to fulfil. This section will additionally identify and
describe the various structural components comprising the
overall TAPA architecture.

3.2 General Requirements

The TAPA application architecture defines a generic Terminal -
PSAM interface such that a terminal application may function
using PSAM'’s produced by different manufacturers.

The TAPA application architecture supports a multi-function
point-of-sale terminal application that can support both EMV
and other payment applications as well as additional
proprietary applications such as loyalty programs.

TAPA is designed to be independent of the implementation
strategy chosen and is independent of both terminal operating
system and device architecture.

TAPA does not impose restrictions on the type of transmission
protocol used to exchange messages between most structural
components. However, communication with ICCs is assumed
to conform to the command-response protocol defined in
reference 3, ISO/IEC 7816-4.

TAPA does not restrict the physical configuration of the
terminal. The terminal may exist as either a complete unit of
fully integrated components (such as a conventional payment
terminal) or may exist to varying degrees as a distributed
system using shared components such as an Internet payment
server. For a distributed system, the PCI Data Security
Standard and the PCI PTS are to be complied with.

3.3 Terminal Application Architecture

The terminal application architecture consists of a set of
logical components. These components include a Router, a set
of Device Handlers, a Multi-Application Driver Handler, and
one or more Purchase Secure Application Modules (PSAM).
Each of these components is described in detail in subsequent
sections of this document. Figure 1 provides an illustration of
the various components, relative location, and relationships

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 10

TAPA Application Architecture Version 3.0

within the TAPA architecture. (Note that the device handlers
are grouped into categories according to their function.)

Figure 1: Logical Components of the Terminal Architecture for PSAM

Applications

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 11

TAPA Application Architecture Version 3.0

4. Functional Requirements

This section provides a detailed description of the various
structural components comprising the TAPA architecture and
their respective functional and processing requirements. For
each component, the command and response sets are defined
as well as required processing and possible Response Codes.

Note: Certain requirements are only applicable if the terminal
uses the PSAM controlled PIN Pad processing specified in
section 14.4. Such requirements are prefaced with the phrase
“PIN Pad Requirement”.

4.1 The Router

The Router functions as a communication channel and is the
central entity to which all Handlers are attached. The
communication channel may be implemented on a variety of
hardware and software protocols such as an internal bus (in
the case of a stand-alone POS device), a LAN in a multi-lane
controller environment, or TCP/IP if architectural components
are remotely distributed on the Internet or an intranet. In
order to accommodate all of the aforementioned
configurations, the Router must function purely as a simple
transport mechanism that is application and device
independent.

The Router is primarily responsible for the transfer of
messages (commands and responses) from one Handler to
another. In this way, the Router functions as a pure transport
mechanism -- ensuring that messages received from an
origination Handler are delivered to the destination Handler as
specified in message address fields. By means of transferring
messages from one Handler to another, the Router also
effectively passes application control from one Handler to
another. Before a destination Handler responds to a message,
it may initiate a series of message exchanges to Handlers other
than the originator of the message.

Aside from validating the address fields of a message to ensure
it can be delivered to the specified destination, the Router
remains ignorant of the data content of the messages it
conveys. This transparency allows the Router to remain
application independent. It is the responsibility of the
individual Handlers to validate, process, and respond to the
contents of the received message.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

4.1.1 Functional Requirements

41.1.1

4.1.1.2

4.1.1.3

4.1.2 Error Handling
4.1.2.1

The Router must validate the source and

destination address and sub-address fields in
messages received from an origination Handler
to ensure they are defined in the specification

and are also supported by the terminal

application. This validation process will ensure

that the message can be delivered to the
appropriate destination Handler.

The Router must not intervene or prevent

routable messages from being delivered to a

destination Handler.

The Router should implement some error
checking mechanism to ensure the data
integrity of messages exchanged between
handlers across physical interfaces. The
mechanism implemented is left to the

discretion of the terminal developer; however,
LRC, CRC, or MAC checking is frequently used.

The Router must generate error messages if
either the source or destination address is
invalid.

Table 1 provides a listing of Router generated

Response Codes.

Table 1: Router Response Codes

Response Code

Description

'FFFO' Invalid Source Address: the source address does not match the
originator of the message.
'FFF1' Invalid Destination Address: the message cannot be delivered

because it contains an invalid destination address.

4.2 The Handlers

Handlers are logical entities responsible for either managing
the interface to a specific hardware component or peripheral

device,
control

or responsible for performing specific operational

functions. There are three types of Handler: Device

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Handlers, the Multi-Application Driver Handler and the Event
Handler.

4.2.1 Device Handlers

Device Handlers are logical entities responsible for managing
the bi-directional interface to a hardware component or
peripheral device such as a card reader, modem, or customer
keypad. A device Handler may manage either a simple or
sophisticated interface. A Device Handler may be a simple
mechanism in the sense that it may only transport a message
received from the Router to the device it operates and
automatically respond to the Handler that originated the
message. In the other extreme, it may be a very sophisticated
piece of software that analyzes the content of incoming and
outgoing messages in addition to manipulating the message
addresses.

The existence of a Device Handler serves the purpose of
shielding interface and implementation details for the specific
device it supports from other components in the system. A
Device Handler should therefore perform only those functions
directly associated with support of the hardware or peripheral
equipment it is intended to support -- thereby allowing
Handlers to remain as application independent as possible.
Each of these Handlers is described in greater detail in
subsequent sections of this document. Note that additional
Handlers may be identified and defined as necessary to
accommodate a particular implementation or environment.

4.2.2 Multi-Application Driver Handler

The Multi-Application Driver Handler is the operative software
component of the terminal application which, in addition to
selecting and controlling transaction processing, performs a
number of operational and maintenance functions. The Multi-
Application Driver Handler is described in greater detail in
Section 5.0.

4.2.3 Event Handler

The Event Handler is a logical entity responsible for receiving
notification of asynchronous external events and providing
notification of these events to the terminal’s application
processing.

The Device Handlers will forward messages to the Event
Handler when events occur such as a card insertion or a key
press is detected. A MAD Handler application, or an entity
(such as a PSAM application) to which the MAD Handler has

Copyright © 2013 Nets Denmark A/S
All rights reserved.

13

October 2013

TAPA Application Architecture Version 3.0

delegated control, may retrieve the events and take
appropriate actions.

4.2.4 General Characteristics

The following characteristics are common to all classes of

Handler:

e Handlers are connected to and communicate directly with

the Router. All messages either originating from or

destined for other Handlers must be exchanged via the

Router.

e Handlers are application independent in that they may be
accessed by multiple applications resident in the terminal.

e Each Handler is assigned a unique logical address as

specified in Table 2. The handler category is assigned sub-
address ‘00’, which permits it to be separately addressed

as a logical component.

e A Handler may be able to respond with plaintext as well as
enciphered data.

Additional Handler and device addresses may be assigned as

needed.

14

Note: Secure communication between the (Secure) Card

Reader and the PSAM to enable Card Data Protection (CDP)
may be used for PCl compliance. For this, the response from the
Handler to the PSAM is enciphered. Requesting an enciphered
response is specified by setting the MSB of the Handler sub-

address to '1".

Table 2: Handler Address Assignments

Handler category Address Sub-address Handler
PSAM '00' '00' The PSAM Handler
'01' PSAM Handler 1
'02' PSAM Handler 2
'03' - '7F' PSAM Handler 3 — PSAM Handler 127
'80" - 'FF' PSAM Handler with enciphered response

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

15

Handler category Address Sub-address Handler
MAD ‘01" '00' The Multi-Application Driver Handler
‘80’ The Multi-Application Driver Handler, with
enciphered response
'01'-'7F" and Reserved for Future Use
‘81’-FF
Card ‘02 '00' The Card Handler
'01' Magnetic stripe Reader
'02' Processor Card Reader
'03' Memory Card Reader
‘04’ Contactless Card Reader
'05' - '7F' Reserved for Future Use
‘80’ The Card Handler with enciphered response
‘81’ The Magnetic stripe Reader with enciphered
response
‘82’ The Processor Card Reader with enciphered response
‘84’ The Contactless Card Reader with enciphered
response
‘85" — ‘FF’ Reserved for Future Use
User Interface '03' '00' The User Interface Handler
'01' PIN Pad
'02' Customer Printer
'03' Customer Key Pad
'04' Customer Display
'05'-'80' Reserved for Future Use
‘81’ PIN PAD with enciphered command/response
‘82" —FF’ Reserved for Future Use

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

16

Handler category Address Sub-address Handler
Merchant Application '04' '00' The Merchant Application Handler
'01' Merchant Key Pad
'02' Merchant Printer
'03' Merchant Log
'04' Merchant Display
'05' - 'EF' Reserved for Future Use
'FO' - 'FF' Serial ports
Data Store ‘05" '00' The Data Store Handler
'01' - 'FF' Reserved for Future Use
Communication '06' '00' The Communication Handler
'01' - 'FF' Reserved for Future Use
Event ‘07’ ‘00’ The Event Handler
'01' - 'FF' Reserved for Future Use
RFU '08 - 'FF’ any Reserved for Future Use

4.2.5 Functional Requirements

This section defines the functional requirements to be
supported by all Handlers.

4.25.1

4.2.5.2

4.2.53

4254

A Handler that receives a command must
always respond to the originator of that
command (except as noted in Section 13.2.1).

Prior to generating a response, a destination
Handler must be permitted to issue commands
to Handlers other than the originator of the
initial command.

A Handler must only respond to the originator
of the command after all required subsequent
dialogue has been completed with other
Handlers.

After sending a command, a Handler must not
send another command to the same destination
or for the same thread prior to receiving a

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

4.3 Message Handling

4.2.5.5

4.2.5.6

4.2.5.7

4.2.5.8

response (except as noted in Section 13.2.1).
(See section 5.5 for a discussion of multi-
threading).

When constructing a response, the responding
Handler must use the source address and sub-
address of the command message as the
destination address and sub-address of the
response. The Thread Identifier (IDtygreap) from
the original command message must be
included in the response.

A Handler should be limited to performing only
those functions as needed to either directly
support a particular device or manage a
particular operation.

When a Handler receives a command message
from another terminal component, it must
return a response to the requesting Handler.

A successful response must contain a Response
Code of ‘0000'".

If the command has not been processed
correctly, the handler must return the
appropriate Response Code.

All Handlers must be able to receive and
process messages with a message data length
of at least 1024 bytes (Lpata < ‘0200’). (Note:
terminal applications must only rely on the
ability to send longer messages in a proprietary
environment).

Command and informational data is exchanged between
components of the application by use of Terminal messages as
defined in Table 3.

Table 3: Terminal Message Format

17

Field Length Format Contents
Destination Address 2 binary Handler address | | Handler Sub-address
Source Address 2 binary Handler address | | Handler Sub-address

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

18
TAPA Application Architecture Version 3.0

Message Type 1 binary The message type of the command message, or 'FF' to
indicate that it is a response message.

ID1HReAD 1 binary Thread Identifier assigned by the Multi Application Driver
Handler.

Lpata 2 binary Length of the message data field

Message Data var. var. Data passed between Handlers. This field may not always
contain data.

Message types can be either handler-dependent or handler-
independent. Handler-independent messages are messages
that are common to and supported by multiple handlers
within the TAPA architecture. Handler-dependent messages
are those supported only by specific Handlers.

The following fields comprise the Handler to Handler message
format:

The Destination Address field contains the address and
sub-address of the Handler to which the Router is
requested to deliver the message. Setting most significant
bit in the destination sub address requires that the
response is encrypted.

The Source Address field contains the address and sub-
address of the Handler that generated the message.

The Message Type field is used to identify the type of
command or response being sent. Table 4, Table 5 and
Table 6 provide a list of currently defined Message Types.

The Thread Identifier field is supplied by the Multi-
Application Driver and is used in systems where the PSAM
Handler can manage several transactions concurrently. In
single transaction systems, this field can be defaulted.

The Lpata field provides the length of the data contained in
the Message Data field.

The Message Data field contains the data being transferred
between Handlers in command and response messages.
Note that, in a response message, the data includes a 2-
byte Response Code.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 4: Terminal Messages, Handlers 0-2

Handler Category

Message Command/Message Name PSAM MAD Card Handler
Type Handler (0) Handler (1) (2)
'40' Read Magnetic Stripe 4
‘41" Write Magnetic Stripe 4
‘42" ICC Command v v
'43" ICC Power-On v v
‘44" ICC Power-Off v v
'45' ICC Query 4 4
‘46’ Verify Offline PIN «l
‘47’ ICC Command partially 4 4
encrypted
‘48’ ICC Command fully ~ ~
encrypted
'FO' Open Handler ~ ~
'F1' Close Handler v v
'F3' Write Handler String ~ ~
'F4' Read Handler String ~ ~
'F5' Get Handler Addresses v v
'FF' Response Message 4 4 4

Copyright © 2013 Nets Denmark A/S
All rights reserved.

19

October 2013

TAPA Application Architecture Version 3.0

Table 5: Terminal Messages, Handlers 3-5

Handler Category

Message Command/Message Name | User Merchant Data Store
Type Interface Application Handler (5)
Handler (3) Handler (4)
'60' Confirm Amount v
'61' Display Message v v
'63' Print Message v v
'64' Purge Print Buffer v v
‘65’ Get Key Check Value v
‘66’ Verify PSAM Public Key v
Certificate
‘67’ Get PIN Pad Public Key y
Record
‘68’ Submit Initial Key v
‘69’ Initiate PIN Entry v
‘6A’ Get PIN V
‘6C’ Terminate PIN Entry v
'80" Get Amount v v
'81' Transaction Completed v
‘82’ Funds Available v v
'90" Create File v
'91' Delete File v
'92' Add File Record v
'93' Get File Record v
'94' Update File Record v
'95' Find and Get File Record v

Copyright © 2013 Nets Denmark A/S
All rights reserved.

20

October 2013

TAPA Application Architecture Version 3.0

Handler Category
Message Command/Message Name | User Merchant Data Store
Type Interface Application Handler (5)
Handler (3) Handler (4)
'96' Delete File Record v
'97' Find and Delete File v
Record
'98' Clear File v
'FO' Open Handler v v v
'F1' Close Handler v v v
'F3' Write Handler String v v v
'F4' Read Handler String v v v
'F5' Get Handler Addresses v v v
'FF' Response Message v v v
'01' - '3F' Reserved for Proprietary
Use
All Others Reserved for Future Use
Table 6: Terminal Messages, Handler 6-7
Handler Category
Message Command/Message Name [=
Type : @ @
e £ 35 -
§ 5 g 5
ST g T
‘B0 Initiate Communication 4
Session
'B1' Terminate Communication ~
Session
'‘co’ Add Event to Queue 4
'c1 Get Event from Queue 4

Copyright © 2013 Nets Denmark A/S
All rights reserved.

21

October 2013

22
TAPA Application Architecture Version 3.0
Handler Category
Message Command/Message Name [=
T . S S
e £ 2 3
§ 5 g 5
S = @ T
'c2' Find Event on Queue y
'c3' Flush Event Queue y
'FO' Open Handler ~ ~
'F1' Close Handler ~ ~
'F3' Write Handler String 4
'F4' Read Handler String 4
'F5' Get Handler Addresses ~ ~
'FF' Response Message 4 4
'01' - '3F' Reserved for Proprietary
Use
All Others Reserved for Future Use
4.3.1 Time-out Management
For most messages, the recipient is expected to perform the
requested action and respond when the action is complete.
43.1.1 If the requested action cannot be performed, or

the requested data is not available, then the
recipient must respond with an error response.

43.1.2 If a message includes a Timer Flag, and the
requested action cannot be performed, the
recipient must wait either until the action can
be performed, or until the maximum time, as
indicated (in milliseconds) in the Time field, has
passed. If all requested data is not available at
the end of the wait period, the available data is
returned.

For example, if the message is a Read request
for 200 bytes of data from the Communications
Handler — and at the end of the Wait time a 150
byte block of data is available — then the

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 23

TAPA Application Architecture Version 3.0

available 150 bytes must be returned in the
response.

43.1.3 If either the Timer Flag is not set, or if the Time
field contains a value of binary zeros, a
response is required either when action is
complete or when it is known that it cannot be
completed.

If there is no malfunctioning identified but the
service cannot be provided, the requester may
wait indefinitely.

4.3.2 Exception Handling

If a handler is not able to perform the requested function, it
must respond to the sender with a Response Message
containing only the appropriate Response Code in the
message data. Specific Response Codes for each message type
are defined in these specifications. The terminal developer
may assign additional proprietary Response Codes as needed.

The recipient of a response message must handle all of the
defined Response Codes appropriately. Any unknown
Response Codes must be treated as an error.

4.4 Handler-Independent Messages

This section describes those commands that can be processed
by any Handler defined within the TAPA architecture.

4.4.1 Get Handler Addresses

The Get Handler Addresses command is used to obtain a list of
active and available addresses within a handler category.

4411 The Get Handler command must conform to the
format defined in Table 7.

Table 7: Get Handler Addresses command

Field Value Length

Destination Address XX00 — this command is sent to a handler category 2
(for example, the PSAM Handler category).

Source Address Any 2

Message Type 'F5' 1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

24
TAPA Application Architecture Version 3.0
ID7HReAD Thread Identifier assigned by the MAD-Handler 1
LoaTa ‘0000’ 2
4.4.1.2 The Get Handler Addresses response must
conform to the format defined in Table 8
Table 8: Response to Get Handler Addresses command
Field Value Length
Destination Address Any 2
Source Address XX00 2
Message Type 'FF' 1
IDtHREAD Thread Identifier of the request 1
Lpata 3+ CNTsygapDRESS 2
CNTsysapDRESS Number of sub-addresses returned 1
SUBADDRESSy Available sub-address N in category 1
Response Code Response Code 2
4.4.1.3 The Response Codes applicable to the Get

Handler Addresses command are listed in Table
9.

Table 9: Response Codes to Get Handler Addresses command

Response Code

Description

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF7' Handler must be opened: the Handler is not in open status and

therefore cannot perform the requested action.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

4.4.2 Open Handler

The Open Handler command is used to initialize or activate a
Handler. The initialization process may include the clearing of
buffers or performing other maintenance procedures deemed
necessary by the terminal developer.

4421 All Handlers must be in the closed state before
terminal start- up.

4.4.2.2 The Open Handler command must conform to
the format defined in Table 10.

Table 10: Open Handler command

Field Value Length
Destination Address Any 2
Source Address Any 2
Message Type 'FO' 1
ID7HReAD Thread Identifier assigned by the MAD-Handler 1
Lpata ‘0000’ 2
4.4.2.3 The Open Handler response must conform to

the format defined in Table 11.

4424 A response of “handler must be opened” must
be returned if a Handler receives a terminal
message prior to being opened.

4425 A response of “handler already opened” must
be returned if a Handler receives the Open

Handler command while already in open status.

4.4.2.6 After successfully processing the Open Handler
command, the handler must be capable of
receiving and processing messages.

25

Note that the handler category is a separate logical unit from
the device handlers within the category. Opening the handler
category does not open other handlers within the category.
(For example, opening the Card Handler category does not
automatically open the Magnetic Stripe Reader.)

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 11: Response to Open Handler command

Field Value Length
Destination Address Any 2
Source Address Any 2
Message Type 'FF' 1
ID1HReAD Thread Identifier of the request 1
Lpata ‘0002’ 2
Response Code Response Code 2
4.4.2.7 The Response Codes applicable to the Open

Handler command are defined in Table 12.

Table 12: Response Codes to Open Handler command

Response Code Description

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to

process it at this moment. The requesting Handler must try again

later
'FFF8' Handler is already open
'FFFA' Handler cannot be opened: an error indicating that the Handler

cannot be opened.

4.4.3 Close Handler

The Close Handler command is used to close or deactivate a
previously opened Handler. Once closed, the affected Handler
is no longer accessible for processing additional commands,
except for the Open Handler command. Note: if the
Communication handler is closed while a communication
session is active, that communication session must be
immediately terminated.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

443.1

The Close Handler command must conform to
the format defined in Table 13.

Table 13: Close Handler command

Field Value Length
Destination Address Any 2
Source Address Any 2
Message Type 'F1' 1
ID1HReAD Thread Identifier assigned by the MAD-Handler 1
LoaTa ‘0000’ 2
4.4.3.2 The Close Handler response must conform to
the format defined in Table 14.
4.4.3.3 A response of “handler already closed” must be
returned when a destination Handler receives a
Close Handler command while already in closed
status.
4434 A response of “Handler cannot be closed” must

be returned when the physical device
processing cannot be terminated. For example,
the communication handler will return this
response when the modem will not hang up.

Table 14: Response to Close Handler command

Field Value Length
Destination Address Any 2
Source Address Any 2
Message Type 'FF' 1
ID1HREAD Thread Identifier of the request 1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

28
TAPA Application Architecture Version 3.0
Loata ‘0002’ 2
Response Code Response Code 2
4435 The Response Codes applicable to the Close
Handler command are defined in Table 15.
Table 15: Response Codes to Close Handler command
Response Code Description
'FFF3' Handler Error: generic message that an unspecified error has
occurred.
'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later
'FFF9' Handler already closed
'FFFC' Handler cannot be closed: an error indicating that the Handler
cannot be closed.
4.4.4 Write Handler String
The Write Handler String command is used to send a data
string to a terminal device. For example, if sent to the User
Display, the data contained in the message will be a
displayable text string. Note that some handlers will not
support this function.
4441 The Write Handler String command must
conform to the format defined in Table 16.
4.4.4.2 If the destination address is for either a Display

or a Printer device, the data string must be
coded as indicated in the Code Table Index.

4443 PIN Pad requirement: If the Write Handler
String command is sent to the User Interface
Display Handler while the Secure Cryptographic
Device (SCD) is in PIN Entry State, the command
must include the SPyac. The SCD must
authenticate the message using the KSESpac of
the PSAM that initiated the PIN Entry.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

4444

KSESpata of the PSAM that initiated the

command.

Table 16: Write Handler String command

computed using KSESwac. Only present if
message must be MAC’ed

Field Value Length
Destination Address | Any 2
Source Address Any 2
Message Type 'F3 1
IDTHREAD Thread Identifier assigned by the MAD-Handler 1
LpaTa ‘0006’ + Length of Message Data + L’ SPyac 2
Timer Flag ‘00’ = Not Timed 1

‘80’ = Timed
Time Time-out value in milliseconds 4
Code Table Index If the destination is either a Display or a Printer 1

device, this field is an index to the character set

being used.

If the destination is neither a Display nor a

Printer device, this field is not used and may be

set to zeros.

If the originator of this command has

enciphered the data string, the most significant

bit of this byte is set to ‘1".
Data String Data to be sent to the Handler var.
SPumac MAC on Destination Address — Data String, Oor8

4445 All Display and Printer device Handlers must
support the Common Character set defined in
reference 6, EMV Book 4, Annex B.

4.4.4.6 The Write Handler String response must

conform to the format defined in Table 17.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

29

SCD requirement: If the Data String in the Write
Handler String command is enciphered, the SCD
must decipher the Data String using the

October 2013 30

TAPA Application Architecture Version 3.0

4.44.7 SCD requirement: If the Data String in the Write
Handler String command is required to be
enciphered, the SCD must encipher the Data
String using the KSESpata of the PSAM that
initiated the command.

4448 If the Handler does not support this function, it
must return a Response Code of Unsupported
Operation.

Table 17: Response to Write Handler String command

Field Value Length
Destination Address Any 2
Source Address Any 2
Message Type 'FF' 1
ID7hReAD Thread Identifier of the request 1
Lpata ‘0002’ 1
Response Code Response Code 2
4449 The Response Codes applicable to the Write

Handler String command are listed in Table 18.

Note: The Response Codes defined in Table 18
are generic Response Codes and do not reflect
handler-specific Response Codes (such as ‘No
Connection for the communication handler’),
nor proprietary Response Codes that may exist
for specific operating environments.

Table 18: Response Codes to Write Handler String command

Response Code Description
‘FF35’ Code Table not supported.
‘FF82’ Authentication Error (MAC validation failed)

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Response Code Description

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF4' Handler must be initialized: the Handler cannot perform the
requested action until it has been initialized.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

4.4.5 Read Handler String

The Read Handler String command is used to retrieve
requested data from another Handler. For example, this
message may be used to retrieve a block of data from the
Communication Handler. Note that some handlers will not
support this function.

4451 The Read Handler String command must
conform to the format defined in Table 19.

Table 19: Read Handler String command

Field Value Length
Destination Address Any 2
Source Address Any 2
Message Type 'F4' 1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

31

October 2013

TAPA Application Architecture Version 3.0
ID7HReAD Thread Identifier assigned by the MAD-Handler 1
LoaTa ‘0007’ 2
Timer Flag ‘00’ = Not Timed 1
‘80" = Timed
Time Time-out value in milliseconds 4
Code Table Index If the destination of the message is a Key entry 1
device, this field is an index to the character set in
which the response data must be returned.
If the destination is not a Key-entry device, this
field is not used and may be set to zeros.
If the originator of this command requires the
response to be enciphered, the most significant bit
of this byte is set to ‘1’.
Len Number of bytes to read 2
4.45.2 The Read Handler String response must
conform to the format defined in Table 20.
4.45.3 If the responding Handler is a key-entry device,
the Returned Data String must be coded using
the character set specified in the Code Table
Index. If the character set is not supported, the
Handler must respond with the appropriate
Response Code (‘FF35’).
4454 All key-entry device Handlers must support the
Common Character set defined in reference 6,
EMV Annex C.
4455 If the Handler does not support this function, it
must return a Response Code of Unsupported
Operation.
Table 20: Response to Read Handler String command
Field Value Length
Destination Address Any 2
Source Address Any 2
Message Type 'FF' 1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

32

October 2013

TAPA Application Architecture Version 3.0

ID7HReAD Thread Identifier of the request 1

Lpata Len +2 2

Returned String Returned Data String Len

Response Code Response Code 2
4.45.6 The Response Codes applicable to the Read

Handler String command are defined in Table
21.

33

Note: The Response Codes defined in Table 21
are generic Response Codes and do not reflect
handler-specific Response Codes (such as ‘No
Connection for the communication handler’),
nor proprietary Response Codes that may exist

for specific operating environments.

Table 21: Response Codes to Read Handler String command

Response Code Description

‘FF35’ Code Table not supported.

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

'FFF4' Handler must be initialized: the Handler cannot perform the
requested action until it has been initialized.

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

4.4.6 Summary

446.1

The common Handler commands are listed in
Table 22. Any handler must support those with
a Destination address marked “any”. The

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

specified handlers must support those with
specific addresses.

Table 22: Handler-Independent commands

Destination Message Description
Address Type

Any 'FO' Open Handler

Any 'F1' Close Handler

Any 'F3' Write Handler String
Any 'F4' Read Handler String

Copyright © 2013 Nets Denmark A/S
All rights reserved.

34

October 2013 35

TAPA Application Architecture Version 3.0

5. The Multi-Application Driver
Handler

The MAD Handler is the interface to the application software.
This software is responsible for running the transactions to be
performed on the terminal.

The application software may also include functions such as
Terminal initialization, Application Maintenance and Acquirer
Processing.

5.1 Application Selection

The first step in transaction processing consists of Application
Selection. This selection process must consider the type of
media being presented such as processor cards, memory cards
or magnetic stripe cards and therefore can be based on AID,
ATR, insertions, a button pressed or other. The result is that a
mutual application is agreed upon, often indicated by an AID.

During terminal initialization, the MAD-Handler has
constructed a cross-reference table that associates each
supported card application with the identity of the terminal
application, which must be used for processing. The terminal
application is denoted by the IDpsamapp. After selecting the
card application, the MAD-Handler uses this cross-reference to
invoke the correct terminal application. (See section 15.1.35
for a description of the IDpsamapp-)

5.2 Terminal Initialization

As part of normal terminal start-up, the terminal application
must perform an initialization procedure to ensure that all
logical components are present and functioning normally. The
terminal initialization process must include the following
procedures:

52.1.1 The MAD-Handler must open any necessary
Device Handlers through the issuance of
multiple Open Handler commands. The MAD-
Handler can determine the occupied sub-
addresses, if any, by using the Get Handler
Addresses command.

5.2.1.2 All PSAMs must be reset by sending an ICC
Power-On command to each occupied sub-
address. In the response the MAD Handler

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 36

TAPA Application Architecture Version 3.0

receives the ATR and, if present, the Historical
Bytes.

5.2.13 The MAD Handler must issue the Start-up PSAM
command to each application at each occupied
PSAM sub-address.

5.2.1.4 The MAD Handler must issue the Get Supported
AlIDs command to each application at each
occupied PSAM sub-address.

5.2.1.5 Prior to completing the configuration process,
the MAD Handler may be required to send one
or more application specific start-up commands
to the PSAM. The format and content of these
commands are outside the scope of this
specification, and must be defined in the
appropriate application specifications.

5.2.1.6 The terminal must successfully perform the
initialization sequence prior to initiating any
card transactions.

Figure 2 illustrates the PSAM Initialization process. The

corresponding behaviour of the PSAM will be described in

section 10.1. Section 10.3 contains details about the

commands.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Open Handler(Address "0000°)
Ok

™

Get Handler Addresses
PSAM Sub-addresses

F:
g
e

Open Handler{Address "00pp’) [
0K |
H Once for each
occupied PSAM
ICC Powver On o 4 Handler sub-
DK[ATA) |] address

|| Start-up PSAM{PSAM Sub-address] (™
OK{PSAM |dentification)

-

Onee for each
IDpsaaape AL 2ach
S oCcupied PSAM
Handler sub-
address

Get Supported AlDs
OK(List of AlDs)

Figure 2: Terminal PSAM Initialisation

5.3 Terminal Shutdown

Certain terminals (in particular battery-operated devices)
require the ability to withdraw power from the PSAM between
cardholder transactions. When a card is inserted into the
device, power is restored to the PSAM and processing
commences.

Such terminals require that the PSAM be restarted very
quickly, without a lengthy initialization.

5.3.1.1 In order to ensure that the PSAM application is
able to save all outstanding data, and be easily
restarted, the terminal must send a PSAM Shut-
down command to each PSAM application, and
receive a response, prior to withdrawing power.

5.4 Terminal Control

When the terminal is initialized, the MAD Handler Application
software has control over the terminal’s functioning. The MAD
Handler applications may temporarily delegate control to
application processing in other devices — in particular the
PSAM. Control is transferred through an application-specific
message or command sent from a terminal application.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

37

October 2013

TAPA Application Architecture Version 3.0

The delegated component will then take over control of the
terminal’s functions — issuing messages to devices and
receiving responses. When its processing is completed, it will
send a response to the MAD Handler application, which
resumes control.

5.5 Multi-Threading

The TAPA message structure incorporates support for “multi-
threading”, where multiple concurrent transactions may be in
process, in varying stages of completion.

An example of an environment where this is required is a
distributed POS environment, consisting of a “server” (which
contains one or more PSAMs, the Data Store and the
connection to the acquirer’s host system) and multiple remote
terminals, each of which contains a card reader and a user
interface.

In such a system, the MAD Handler application functions are
distributed between the remote terminal and the server. The
messaging between the distributed and centralized parts of
the MAD Handler applications is proprietary to the device
developer and outside the scope of this specification. This
messaging must however include identification of the remote
terminal.

55.1.1 In order to support a multi-threading
environment, the MAD Handler must assign a
unique identifier (IDtyrean) to each currently
active transaction, which must be used in all
Terminal Messages relating to that transaction.
The IDureap Value may be reused after a
transaction has been terminated.

5.6 Exception Handling

There are a variety of exception conditions that can occur
during application processing in a POS device. This section
addresses the exception conditions that affect the interface
between the MAD Handler application and the PSAM
application, and defines a set of functions that must be
provided by the PSAM and terminal applications in order to
allow the other component to attempt recovery.

Exception conditions fall broadly into the following categories:

e Aninability to perform a particular transaction because of
a problem detected during the dialogue with the consumer
card. This is normally not a problem with the POS device,

Copyright © 2013 Nets Denmark A/S
All rights reserved.

38

October 2013

TAPA Application Architecture Version 3.0

and simply requires completing the transaction in a
defined manner.

e Atemporary problem with a particular device. This may
particularly be the case in a distributed environment
where some resources are shared. This sort of problem
may possibly be overcome by retrying the failed function.

e A hardware or software problem with the POS device that
prevents continued correct functioning. The resolution to
this sort of problem is device and implementation
dependent, and outside the scope of this specification.

Exception processing is specific to each TAPA application, i.e.
IDpsamapp-

Copyright © 2013 Nets Denmark A/S
All rights reserved.

39

October 2013

TAPA Application Architecture Version 3.0

6. The Card Handler

The Card Handler is responsible for managing the interface to
an integrated or peripheral card reading device. Currently
defined card reading devices include the magnetic stripe
reader, IC card reader, memory card reader and contactless
card reader. Each card reading device and its associated Card
Handler sub-address is defined in Table 2.

6.1 Commands sent to the Magnetic Stripe Reader

6.1.1 Read Magnetic Stripe

The Read Magnetic Stripe command is used to read data from
one or more I1SO magnetic tracks. The command supports
enciphered as well as clear text response.

6.1.1.1 The Read Magnetic Stripe command must
conform to the format defined in Table 23.

Table 23: Read Magnetic Stripe command

Field Value Length
Destination Address '0201' / '0281" 2
Source Address Any 2
Message Type '40' 1
ID1HReAD Thread Identifier assigned by the MAD-Handler 1
Lpata ‘0007’ 2
Timer Flag ‘00’ = Not Timed 1
‘80" = Timed
Time Time-out value in milliseconds 4
u Track Identifier of 1SO track(s) to be read as shown 1
in Table 24
Len Length of track data to be read 1

The parameter track u is the hex value of the ISO identifier of
the magnetic stripe track(s) to be read (as illustrated in Table
24). See reference 9, ISO/IEC 7813 for a description of the

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

41

TAPA Application Architecture Version 3.0

format of this data element. If the magnetic stripe track data is
to be returned in enciphered form, the highest bit in u is set. A
particular device is not required to support all of these
possibilities.

Table 24: Track Assignment

Track u Tracks to be read
1 ‘01’, ‘81’ ISO1
2 ‘02’, ‘82’ 1SO2
3 ‘03’, ‘83’ 1ISO3
12 ‘oc’, ‘8C’ ISO1 and 1SO2
13 ‘oD’, ‘8D’ ISO1 and I1SO3
23 17’, ‘97’ ISO2 and 1SO3
123 ‘78’, ‘FB’ ISO1, 1SO2 and ISO3

Len is its maximum length, in bytes. On return, len gives the
actual length of the string read for each track. If more data is
available, a Response Code of “output buffer overflow” is
returned, together with the maximum length of data specified.
See reference 9, ISO/IEC 7813 for a description of the track
data formats.

This command returns when either track data is available or
the time-out is reached. The operation may return tracks that
have been read since the last execution of this command and
stored in a buffer. If the Handler does not have track buffering
capability, only one swipe of the card must be buffered and all
the track buffers will be cleared after their contents have been
returned by this command (even if all tracks were not
requested).

The format returned by the Read Magnetic Stripe command
depends on whether or not the data are encrypted.

For plaintext data each track is a track number (1, 2 or 3), a
length byte and the data whose size is specified by the length
byte. If multiple tracks are requested, there are multiple
instances of the above structure concatenated in the order
they were requested. The data is returned in ASCII format
with STX/ETX and LRC delimiters removed. Non-BCD digits are

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 42

TAPA Application Architecture Version 3.0

left unconverted. (Please see Figure 3 below for an example.)

For example:

BYTES FROM CARD ==> BYTES DELIVERED TO APPLICATION
B1234D 78 5F xx=>313233340D 373835
A A ALRC

STX ETX

Figure 3: Example of bytes read from Magnetic Stipe

6.1.1.2 A response of “unsupported operation” must
be returned if the reader does not support one
or more of the requested tracks. If the
requested tracks are supported by the reader,
but are not present on the card swiped, then a
response of “successful operation” is returned
and the message contains those tracks that are
available on the card.

6.1.1.3 If an error occurs while reading one or more of
the requested tracks, a Response Code of
“transmission error” must be returned with the
length field of the corresponding tracks in the
returned message set to zero. In this case, the
data of the tracks that were read successfully is
available in the returned message.

6.1.1.4 The Read Magnetic Stripe clear text response
must conform to the format defined in Table
25.

6.1.1.5 SCD requirement: The data of the track(s) must

be enciphered using the KSEScpp of the PSAM
that initiated the Read Magnetic Stripe
command if the highest bit in u is set. The data
shall be formatted as specified in Table 26.

Note: After a Read Magnetic Stripe function has been
performed, the buffer containing the read data must be
cleared after returning the response or prior to performing a
subsequent read operation. Closing and re-opening the
Magnetic Stripe Reader may clear the buffer.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 25: Clear text response to Read Magnetic Stripe command

Field Value Length
Destination Address Any 2
Source Address '0201'/'0281" 2
Message Type 'FF' 1
ID1HREAD Thread Identifier of the request 1
LpaTa Overall length of data that follows, var. 2
Magnetic Stripe Data A set of data for each track read
U The identifier of the following track data (must be 1
‘01, ‘02’, ‘03’, ‘817, ‘82’, or ‘83’)
Len Length of the data read from this track or length of 1
enciphered track data
Data Track Data read from the specified track or var.
enciphered data.
Response Code Response Code 2

Table 26: Enciphered response to Read Magnetic Stripe command

Field Value Length
Seed Any, in plain text 4
Enciphered data Enciphered using KSEScpp
Random number Any 4
Track data Data read from the track var
Padding ’80...", pad to n x 8 byte var
Response Code Response Code 2

43

6.1.1.6 The Magnetic Stripe Reader must be capable of
generating the Response Codes to the Read
Magnetic Stripe command as defined in Table

27.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

6.1.2

Table 27: Response Codes to Read Magnetic Stripe command

Response Code Description

‘FF20’ Read Error

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or

an associated data set that was unrecognized or unsupported.

Write Magnetic Stripe

The Write Magnetic Stripe is an optional command used to
write the entire track data to ISO track 3. (This command may
be required by some proprietary applications).

6.1.2.1

6.1.2.2

The Write Magnetic Stripe command must
conform to the format defined in Table 28.

Secure Cryptographic Device requirement: The
data of the track must be deciphered using the
KSEScpp of the PSAM that initiated the Read
Magnetic Stripe command.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

44

October 2013

TAPA Application Architecture Version 3.0

Table 28: Write Magnetic Stripe command

Field Value Length

Destination Address '0201" 2

Source Address Any 2

Message Type '41' 1

ID1HREAD Thread Identifier assigned by the MAD-Handler 1

LpaTa ‘0007’ + Len 2

Timer Flag ‘00’ = Not Timed 1
‘80" = Timed

Time Time-out value in milliseconds 4

u Identifier of the track to be written (must be ‘03’, or 1
483/)

Len Length of track data to be written or length of 1
enciphered track data

Message Data Enciphered track data or track data to be written to Len
the magnetic stripe

The parameter track u is the identifier of the track to write, as
shown in Table 24. The data must be written to track 3 when
the user swipes the card. If no card is swiped within the time-
out period allowed, a response of “timeout” is returned. Clear
text data are given in ASCII format. Enciphered data are
formatted as specified in Table 26 and shall be deciphered
before written.

The data is written to the card is in the format specified in
ISO/IEC 4909: 2006 “Identification cards — Financial
transaction cards — Magnetic stripe data content for track 3”.

Note: After a Write Magnetic Stripe function has been
performed; the buffer containing the written data must be
cleared prior to performing a subsequent read operation.
Closing and re-opening the Magnetic Stripe Reader may clear
the buffer.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

45

October 2013

46
TAPA Application Architecture Version 3.0
For example:
BYTES DELIVERED BY APPLICATION => BYTES TO CARD
313233340D373835=>B1234D 78 5F xx
N AN I\LRC
STX ETX
Figure 4: example of bytes written to Track 3
6.1.2.3 The Write Magnetic Stripe response must
conform to the format defined in Table 29.
Table 29: Response to Write Magnetic Stripe command
Field Value Length
Destination Address Any 2
Source Address '0201" 2
Message Type 'FF' 1
ID1HReAD Thread Identifier of the request 1
Loata ‘0002’ 2
Response Code Response Code 2
6.1.2.4 The Magnetic stripe Reader must be capable of

generating the Response Codes to the Write
Magnetic Stripe command as defined in Table
30.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 30: Response Codes to Write Magnetic Stripe command

Response Code Description

'FF20' Unrecoverable Transmission error between reader and magnetic
stripe

'FF21' Output buffer overflow

'FF22' Write operation failed

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

6.2 Commands sent to the Processor Card Reader
The interface between the Processor Card Reader and the ICC

is a standard command-response protocol as defined in

reference 3, ISO/IEC 7816-4 and reference 6, EMV, Book II,
section 2.1. The technical interface must be as defined in
reference 2, ISO/IEC 7816-3 and reference 6, EMV — Book |.

The Processor Card Reader is responsible for performing the

47

required formatting between the command-response protocol

and the Terminal Message formats used among terminal
components. Commands are sent to the processor card from
other terminal components using the ICC command, which
contains within it the command APDU to be delivered to the

card.

The response APDU from the processor card must then be
sent to the handler that originated the command, embedded

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 48

TAPA Application Architecture Version 3.0

within a Terminal response message.

Note that the Response Code contained in the response
message only reflects whether the receiving handler was able
to successfully process the ICC command, forward the C-APDU
to the processor card, and receive a response. If a response is
received from the processor card, then the Processor Card
Reader has been able to successfully process the command
message. The Status Words in the reply from the processor
card will be contained in the Message Data field returned in
the response to the ICC command. Figure 5 provides an
illustration of the message flows occurring between the
Processor Card Reader and the ICC.

6.2.1 Message Handling

Figure 5 illustrates the role of the Processor Card Reader in
transmitting messages between the ICC and the terminal.
Figure 6 shows the detailed message translation that must be
performed.

CC Command [C-APDU] ¢ ——— h JC-ARDU]
—_._.'a, =

Router
. - i.—
-W;' ICC Response [R-APDU]

Figure 5: Handler to Processor Card Interface

6.2.1.1 If the interface to the Processor Card is T=0, the
Get Response must be implemented as part of
the Handler to deal with the requirements for
case 2 and case 4 commands. (Please see
reference 3, ISO/IEC 7816-4 and reference 6,
EMV for further information on T=0
requirements).

6.2.2 Enciphered Messages

The interface to the Processor Card has been extended to
handle enciphered data transfer. Commands can be partially
(MT =‘47’) and fully encrypted (MT = ‘48’) commands.

6.2.2.1 The Message Type must be used to show
whether or not the command is partially (MT =
‘47’) and fully encrypted (MT = ‘48’) enciphered.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

6.2.2.2 The sub-handler address of the destination
controls whether or not the response shall be
encrypted. The setting of the most significant
bit of the destination sub-handler address
requests an enciphered response to be
generated.
Processor Card Card
Router Reader
>
DAD SAD MT IDTHREAD Lpata C-APDU
0202 source of ‘42 ‘n’ DATA CLA | INS P1P2 L. DATA Le
ICC length
command

CARD-H must keep trace of the inbound
message, and extract/ forward the C-
APDU (which should fit given
application command specs)

>
[c-APDU |
CLA JINS JPP2 [L [DATA L |
Card generates an
R-APDU that fits given
application command
response specs
-
[R-APDU |
| DATA N [swisw2 |

CARD-H must construct an ICC Response, using retained data
from the inbound message, inverting the SAD and DAD, and
containing the entire R-APDU received from the Card.

Note : The received R-APDU may contain no Data, in which
case only the SW1SW?2 is forwarded

The Processor Card Reader adds its RC as trailer

-
DAD SAD | MT ID1HREAD Loata DATA
Retained source 0202 | ‘FF | ‘nn’

DATA
length

RC determined

of ICC command by CARD-H

Figure 6: Processor Card Message Translation

6.2.3 ICC Command/Response

The ICC command is used to send a command APDU to an IC
card.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

6.2.3.1 An ICC command must conform to the format
defined in Table 31.
Table 31: ICC command

Field Value Length
Destination Address '0202' 2

Source Address Any 2

Message Type '42' 1

ID1HREAD Thread Identifier assigned by the MAD-Handler 1

LpaTa Length of the Card Command 2

Card Command C-APDU to be sent to the IC card Lpata

6.2.3.2

6.2.3.3

6.2.3.4

6.2.3.5

6.2.3.6

defined in Table 32.

initiated the ICC command.

An ICC response must conform to the format

SCD Requirement: The response data must be
enciphered using the KSEScpp of the PSAM that

When constructing a response message to
another Handler, the Processor Card Reader

50

must use the source address and sub-address of

the original request message as the destination
address and sub-address of the response, set
the Message Type to 'FF', and include the
Thread Identifier from the original request

message.

get a response.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

The Processor Card Reader must return the
Response Code of “successful operation” if the
Handler was able to deliver the C- APDU to the
card successfully and receive a response.

The Processor Card Reader must return the
appropriate Response Code if it is unable to
deliver the C-APDU to the IC card or does not

October 2013

TAPA Application Architecture Version 3.0

Table 32: Response to ICC command

Field Value Length
Destination Address Any 2
Source Address '0202' 2
Message Type 'FF' 1
ID7HReAD Thread Identifier of the request 1

LpaTa Length of the Card Response + ‘0002’ 2

Card Response Complete R-APDU from card, including the Status var.

Words
Response Code Response Code 2
6.2.3.7 The Response Codes applicable to the ICC

command are defined in Table 33.

Table 33: Response Codes to ICC command

Response Code Description

'FF23' No response from card

'FF24' No card in reader

'FF26' Card buffer overflow

'FF28' Response has no status words

'FF29' Invalid buffer

'FR2A' Other card error

'FF2B’ Card partially in reader

'FFF3' Handler Error: generic message that an unspecified error
has occurred.

'FFF5' Handler busy: the Handler received the message but is
unable to process it at this moment. The requesting Handler
must try again later

Copyright © 2013 Nets Denmark A/S
All rights reserved.

51

October 2013

TAPA Application Architecture Version 3.0

Response Code

Description

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the
requested function.

'FFF7' Handler must be opened: the Handler is not in open status
and therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a

command or an associated data set that was unrecognized
or unsupported.

6.2.4 ICC Power-On

The ICC Power-On command is used to apply power to the
processor card and execute the ‘card reset’ function. The
Answer to Reset (ATR) message must be returned in the

Message Data field.

6.2.4.1

the format defined in Table 34.

Table 34: ICC Power-On command

Field Value Length
Destination Address '0202' 2
Source Address Any 2
Message Type '43' 1
ID7HReAD Thread Identifier assigned by the MAD-Handler 1
Loata '0000"' 2
6.2.4.2 The ICC Power-On response must conform to

the format defined in Table 35.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

The ICC Power-On command must conform to

October 2013

TAPA Application Architecture Version 3.0

Table 35: Response to ICC Power-On command

Field Value Length
Destination Address Any 2
Source Address '0202' 2
Message Type 'FF' 1
ID7hReAD Thread Identifier of the request 1

LpaTa Length of the ATR + ‘0002’ 2

ATR ATR from IC Card var.
Response Code Response Code 2

6.2.4.3 The Response Codes applicable to the ICC

Power-On command are defined in Table 36.

Table 36: Response Codes to ICC Power-On command

Response Code Description

'FF23' No response from card

'FF24' No card in reader

'FF2A' Other card error

'FF2B’ Card partially in reader

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

53

October 2013

TAPA Application Architecture Version 3.0

Response Code

Description

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.
‘FFFB’ Unsupported operation: the Handler has received a command or

an associated data set that was unrecognized or unsupported.

6.2.5 ICC Power-Off

The ICC Power-Off command is used when a transaction
involving an IC card has been completed. Use of this command

may additionally result in the ejection of the IC card in
terminals where this feature is warranted.

6.2.5.1

the format defined in Table 37.

Table 37: ICC Power-Off command

Field Value Length
Destination Address '0202' 2
Source Address Any 2
Message Type '44' 1
ID7hreAD Thread Identifier assigned by the MAD-Handler 1
LoaTa '0000' 2
6.2.5.2 The ICC Power-Off response must conform to

the format defined in Table 38.

Table 38: Response to ICC Power-Off command

Field Value Length
Destination Address Any 2
Source Address '0202' 2
Message Type 'FF' 1
ID1HReAD Thread Identifier of the request 1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

The ICC Power-Off command must conform to

October 2013

TAPA Application Architecture Version 3.0

Loaa '0002' 2
Response Code Response Code 2
6.2.5.3 The Response Codes applicable to the ICC

Power-Off command are defined in Table 39.

Table 39: Response Codes to ICC Power-Off command

Response Code Description

'FF24' No card in reader

'FF2B’ Card partially in reader

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

6.2.6 ICC Query

The ICC Query command is issued to the Processor Card
Reader in order to determine if a card is physically present in
the IC reader.

6.2.6.1 The ICC Query command must conform to the
format defined in Table 40.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

55

October 2013

TAPA Application Architecture Version 3.0

Table 40: ICC Query command

Field Value Length
Destination Address '0202" 2
Source Address Any 2
Message Type '45' 1
ID7hReAD Thread Identifier assigned by the MAD-Handler 1
LoaTa '0000' 2
6.2.6.2 The ICC Query response must conform to the
format defined in Table 41.
6.2.6.3 The Handler must return the appropriate
Response Code if the ICC Query if no card is
present.
Table 41: Response to ICC Query command
Field Value Length
Destination Address Any 2
Source Address '0202" 2
Message Type 'FF' 1
ID1HReAD Thread Identifier of the request 1
Loata '0002' 2
Response Code Response Code 2
6.2.6.4 The Response Codes applicable to the ICC

Query command are defined in Table 42.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

56

October 2013

TAPA Application Architecture Version 3.0

6.2.7

Table 42: Response Codes to ICC Query command

Response Code Description

'FF24' No card in reader

'FF2B’ Card partially in reader

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

Verify Offline PIN

The Verify Offline PIN command is specific to the PIN Pad
processing described in section 14.4. Terminals that do not
support the PIN Pad Processing do not need to support this
command.

The Verify Offline PIN command is an authenticated message,
which is used to send a command APDU to the card while the
Secure Cryptographic Device (SCD) is in PIN Entry State. The C-
APDU is encrypted and embedded in a Verify Offline PIN
message with MAC, which is sent to the Processor Card
Reader. The command has been updated to ensure that no
sensitive are transmitted unencrypted and that data are not
encrypted more than once. The format of the command does
thus differ, dependent on whether or not the PIN is plaintext
or enciphered. Enciphered PIN will use MT =46’ and plaintext
PIN will use MT = ‘42’. Selecting the new mode in the PSAM is
performed during the configuration setup.

The Processor Card Reader authenticates the message and
decrypts the C-APDU. The subsequent processing is the same
as that for the standard ICC Command message. The response

Copyright © 2013 Nets Denmark A/S
All rights reserved.

57

October 2013

TAPA Application Architecture Version 3.0

to the Verify Offline PIN command also contains a MAC. The
response may be enciphered or plaintext depending on the
sub handler address.

6.2.7.1 The Verify Offline PIN enciphered command
must conform to the format defined in Table
43,

Table 43: Verify Offline PIN enciphered, command

Field Value Length
Destination Address '0202' 2
Source Address Any 2
Message Type '46' 1
ID7hReAD Thread Identifier assigned by the MAD-Handler 1
LpaTa Length of [C-APDU] 2
[C-APDU] PIN block enciphered using public RSA key var.
MACyope MAC on Dest. Address — [C-APDU], computed using | 8
KSESmac
6.2.7.2 The Verify Offline PIN plaintext command must

conform to the format defined in Table 44.

Table 44: Verify Offline PIN plaintext, command

Field Value Length
Destination Address '0202' / ‘0282’ 2
Source Address Any 2
Message Type '47' 1
ID1hreAD Thread Identifier assigned by the MAD-Handler 1
FID ‘01’, Format Identifier 1
Lior Length of (plaintext) Header 2
HDR Plaintext header var.
Lenchr Length of encrypted data 2

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

KSESmac

Field Value Length
ENC(KSESpara)[Datal Enc(KSESpata)[RND(8] | | Enc(KSESpn)[PIN block]] | var.
Lrrai Length of trailer 2
Trailer Optional trailer Var.
MACyopp MAC on Dest. Address —Trailer, computed using 8

6.2.7.3

6.2.7.4

6.2.7.5

6.2.7.6

6.2.7.7

The Verify Offline PIN plaintext response must
conform to the format defined in Table 45.

The Secure Cryptographic Device must verify
the MACyop in the command using the KSESyac,
and decrypt the C-APDU using the KSESpara.

When constructing a response message to
another Handler, the Processor Card Reader

59

must use the source address and sub-address of

the original request message as the destination
address and sub-address of the response, set
the Message Type to 'FF', and include the
Thread Identifier from the original request

message.

The Processor Card Reader must return the
Response Code of “successful operation” if the
Handler was able to deliver the C- APDU to the
card successfully and receive a response.

The Processor Card Reader must return the
appropriate Response Code if it is unable to
deliver the C-APDU to the IC card or does not

get a response.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 45: Plaintext response to Verify Offline PIN command

Field Value Length
Destination Address Any 2
Source Address '0202' 2
Message Type 'FF' 1
ID7HReAD Thread Identifier of the request 1
LpaTa '000A' + length of Card response 2
Card Response Complete R-APDU from card (including SW1-SW2) var.
MACgyop MAC over Card Response | | MACygpy (from the 8
command), computed using KSESyac
Response Code Response Code 2

Table 46: Enciphered response to Verify Offline PIN command

Field Value Length
Destination Address Any 2
Source Address '0282' 2
Message Type 'FF' 1
ID7hReAD Thread Identifier of the request 1
LpaTa ‘001A’ + Length of Enciphered Card Response 2
Seed 4
Enciphered Response Enc(KSEScpp)[RND(4] | | R-APDU || ’80..."] var.
MACgyop MAC over Seed | | Enciphered Response | | 8
MACopx (from the command), computed using
KSESmac
Response Code Response Code 2

Copyright © 2013 Nets Denmark A/S
All rights reserved.

60

October 2013

TAPA Application Architecture Version 3.0

6.2.7.8 In addition to the Response Codes defined for
the ICC command (in Table 33), the Response
Codes defined in Table 47 are applicable to the
Verify Offline PIN Command.

Table 47: Response Codes to Verify Offline PIN command

Response Code Description

‘FF82’

Authentication Error (MAC validation failed)

‘FF87’

Secure Cryptographic Device not in PIN Entry State

6.3 Commands sent to Memory Card Reader

The interface to memory cards is proprietary and outside the
scope of this specification. In addition to the common handler
commands defined in Section 4.4, it is expected that the
commands listed in Table 48 with a possible destination
address of ‘0203’ will also be used for the Memory Card
Reader.

6.4 Commands sent to the Contactless Card

Reader

The interface between the Contactless Card Reader and the
ICC will use the protocol defined in Reference 4, EMV
Contactless. The protocol is outside the scope of this
specification.

In addition to the common handler commands defined in
Section 4.4, the commands listed in Table 48 with destination
address of ‘0204’ will also be used for the contactless card
reader.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

61

October 2013

TAPA Application Architecture Version 3.0

6.5 Summary

Table 48: Card Handler commands

Destination Address Source Message Type | Description
Address
'0201" Any '40' Read Magnetic Stripe
'0201' Any '41" Write Magnetic Stripe
'0202','0203','0204’,’ Any '42' ICC Command
00xx’
'0202','0203','0204’,/ Any '43' ICC Power-On
00xx’
'0202','0203','0204’ Any ‘a4’ ICC Power-Off
00xx’
'0202','0203',’00xx’ Any '45’ ICC Query
‘0202’,/0204’ Any ‘46’ Verify Offline PIN

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 63

TAPA Application Architecture Version 3.0

7. The User Interface Handler

The User Interface Handler is responsible for managing the
interface to all user (customer) related equipment and
peripherals, which may include the customer display,
customer printer, PIN pad, and customer keypad.

7.1 Messages sent to the User Interface Handler

In addition to the common Handler commands provided in
Section 4.4, the User Interface Handler must support the
command set outlined in this section.

7.1.1 Display Message

The Display Message command is used to display a pre-
defined text message on a display unit (either that of the User
Interface Handler or the Merchant Application Handler).

7.1.1.1 The Display Message command must conform
to the format defined in Table 49.

7.1.1.2 PIN Pad requirement: If the Display Message
command is sent to the User Interface Display
Handler while the Secure Cryptographic Device
(SCD) is in PIN Entry State, the command must
include the SPyac. The SCD must authenticate
the message using the KSESyac of the PSAM
that initiated the PIN Entry.

Table 49: Display Message command

Field Value Length
Destination Address '0304' or ‘0404’ 2
Source Address Any 2
Message Type '61’ 1
ID7hreAD Thread Identifier assigned by the MAD-Handler 1
Lpata ‘0001’ or ‘0009’ 2

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

64

Field Value Length

Message Code Message Code to be translated into text by 1
receiving handler

SPyiac MAC on Destination Address — Message Code, Oor8
computed using the KSESyac.

7.1.1.3

7.1.1.4

The receiving Handler must convert the 1-byte
message code contained in the Display Message
command into a predefined text as listed in
Table 177. The terminal should use the defined
message or the equivalent in the preferred
language.

Message Codes ‘01’ — ‘3F are defined in
reference 6, EMV and are included in Table 177
only for completeness. In order to ensure
compliance with EMV for use of that range, the
terminal developer should reference the EMV
specifications.

The Display Message response must conform to
the format defined in Table 50.

Table 50: Response to Display Message command

Field Value Length
Destination Address Any 2
Source Address '0304' or ‘0404’ 2
Message Type 'FF' 1
ID1HREAD Thread Identifier of the request 1
Loata '0002"' 2
Response Code Response Code 2
7.1.1.5 The Response Codes applicable to the Display

Message command are defined in Table 51

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 51: Response Codes to Display Message command

Response Code Description

‘FF34' Unknown Message Code

‘FF82’ Authentication Error (MAC validation failed)

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

7.1.2 Print Message

The Print Message command is used to send pre-defined text
messages to printer devices.

7.1.2.1

7.1.2.2

the format defined in Table 52.

The Print Message command must conform to

The Print Message Code field must contain a 1-
byte code as defined in Table 177, which the

65

receiving Handler must interpret and convert to

a predefined text message before being
transferred to an attached printer.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 52: Print Message command

Field Value Length
Destination Address '0302' or ‘0402’ 2
Source Address Any 2
Message Type '63' 1
ID1HREAD Thread ldentifier assigned by the MAD-Handler 1
Loata ‘0001' 2
Message Code Print Message Code 1
7.1.2.3 The Print Message response must conform to

the format defined in Table 53.

Table 53: Response to Print Message command

Field Value Length
Destination Address Any 2
Source Address '0302' or ‘0402’ 2
Message Type 'FF' 1
ID1HReAD Thread Identifier of the request 1
Lpata '0002' 2
Response Code Response Code 2
7.1.2.4 The Response Codes applicable to the Print

Message command are defined in Table 54.

Table 54: Response Codes to Print Message command

Response Code Description

'FF31' Printer out of paper

'FF32' Printer has signalled an error

'FF33' Printer does not appear to be connected and online

Copyright © 2013 Nets Denmark A/S
All rights reserved.

66

October 2013

67

TAPA Application Architecture Version 3.0

Response Code Description

‘FF34' Unknown Message Code

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

7.1.3 Confirm Amount

When the User Interface Handler receives this command, it
must perform any necessary processing to display and confirm
the transaction amount. The particular steps performed will be
proprietary and environment dependent.

7.1.3.1 The Confirm Amount command must conform
to the format defined in Table 55.

7.1.3.2 PIN Pad requirement: If the Confirm Amount
command is sent to the User Interface Handler
while the Secure Cryptographic Device (SCD) is
in PIN Entry State, the command must include
the SPpac. The SCD must authenticate the
message using the KSESyac of the PSAM that
initiated the PIN Entry.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 55: Confirm Amount command

Field Value Length
Destination Address '0300' (User Interface Handler) 2
Source Address Any 2
Message Type '60’ 1
ID7HReAD Thread Identifier assigned by the MAD-Handler 1
Loata '000C' or’0014’ 2
Timer Flag ‘00’ = Not Timed 1

‘80" = Timed
Time Time-out value in milliseconds 4
Amount Transaction Amount 4
CURR Currency Code and exponent 3
SPyac MAC on Dest. Address — CURR, computed using the Oor8

KSESmac-

7133 The Confirm Amount response must conform to

the format defined in Table 56.

7.1.3.4 PIN Pad requirement: If the Confirm Amount
command is sent to the User Interface Handler
while the Secure Cryptographic Device (SCD) is
in PIN Entry State, the response must include
the SPyac, r, generated by the SCD using the
KSESmac of the PSAM that initiated the PIN
entry.

Table 56: Response to Confirm Amount command

Field Value Length
Destination Address Any 2
Source Address '0300' (User Interface Handler) 2
Message Type 'FF' 1
ID1HReAD Thread Identifier of the request 1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Field Value Length
Loata '0003' or ‘000B’ 2
Amount Confirmed | '00' = Confirmed 1
Indicator '01' = Not Confirmed

‘02’ = Cancelled by user

SPmac, R MAC over Amount Confirmed Indicator | | SPyac Oor8
(from the command).

Response Code Response Code 2

7.1.35 The Response Codes applicable to the Confirm
Amount command are defined in Table 57.

Table 57: Response Codes to Confirm Amount command

Response Code Description
‘FF82’ Authentication Error (MAC validation failed)
‘FFF2’ Time-out: the requested operation is valid, but some external

event necessary for the proper execution failed to arrive in time.

‘FFF3’ Handler Error: generic message that an unspecified error has
occurred.
'FFF5' Handler busy: the Handler received the message but is unable to

process it at this moment. The requesting Handler must try again

later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and

therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

7.1.4 Purge Print Buffer

The Purge Print Buffer command is used to print and clear
data that may be present in a print buffer.

7.1.4.1 The Purge Print Buffer command must conform
to the format defined in Table 58.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 58: Purge Print Buffer command

Field Value Length
Destination Address ‘0302’ 2
Source Address Any 2
Message Type '64' 1
ID1HREAD Thread Identifier assigned by the MAD-Handler 1
Loata '0000' 2
7.1.4.2 The Purge Print Buffer response must conform

to the format defined in Table 59.

Table 59: Response to Purge Print Buffer command

Field Value Length
Destination Address Any 2
Source Address '0302' 2
Message Type 'FF' 1
ID1HReAD Thread Identifier of the request 1
Loata '0002"' 2
Response Code Response Code 2
7.1.4.3 The Response Codes applicable to the Purge

Print Buffer command are defined in Table 60.

Table 60: Response Codes to Purge Print Buffer command

Response Code Description

'FF30' Out of border

'FF31' Printer out of paper

'FF32' Printer has signalled an error

'FF33' Printer does not appear to be connected

Copyright © 2013 Nets Denmark A/S
All rights reserved.

70

October 2013

TAPA Application Architecture Version 3.0

Response Code Description

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

7.1.5 Get Amount

The User Interface Handler may also be able to receive and
process the Get Amount and Get Amount Enhanced messages,
defined in sections 8.1.1 and 8.1.2.

7.1.5.1 PIN Pad requirement: If a Get Amount
command is sent to the User Interface Handler
while the Secure Cryptographic Device (SCD) is
in PIN Entry State, the command must include
the SPyac. The SCD must authenticate the
message using the KSESyac of the PSAM that
initiated the PIN Entry.

7.1.6 Funds Available

The User Interface Handler may also be able to receive and
process the Funds Available message, defined in section 8.1.4.

7.2 PIN Pad Handler

This section defines requirements for commands sent to the
User Interface.

All Secure Cryptographic Device's supporting PKC shall support
the commands Get Key Check Value, Get Public Key Record
and Verify PSAM Public Key Certificate (Submit Initial key).

The terminal’s Secure Cryptographic Device - PIN Pad or
separate Secure Cryptographic Device - needs to support these
commands.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

71

October 2013

TAPA Application Architecture Version 3.0

72

7.2.1 Get Key Check Value

7.2.1.1

The Get Key Check Value command must
conform to the format defined in Table 61.

Table 61: Get Key Check Value command

Field Value Length

Destination Address '0301" 2

Source Address Any 2

Message Type '65' 1

ID7HReAD Thread Identifier assigned by the MAD-Handler 1

Loata ‘0012’ + Nyyp 2

RIDpsam RID used by the PSAM Creator 5

IDpsamcREATOR Identifier assigned to the PSAM Creator by the 4
owner of the RID

IDpsam Identifier assigned by the PSAM Creator to the 4
PSAM.

Nykp Number of CA PP Public Keys contained in the 1
PSAM

VKPca pp Key versions of the CA PP Public Keys contained in Nyke
the PSAM

CHALLENGEpspp Any non-repeating or random 4-byte value 4
generated by the PSAM

7.2.1.2

The Secure Cryptographic Device/PIN Pad must
verify that one of the public key version
numbers (VKPca, pp) listed in the Get Key Check
Value Command (to be used by the PSAM to
verify the certificates) corresponds to the
version number of the public key that created
the highest level certificate in a public key
certificate chain available to the Secure
Cryptographic Device/PIN Pad.

From the intersection of VKPca pps supported by
both the PSAM and the SCD/PIN pad, the
SCD/PIN pad shall select the version of the

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

VKPca, pp having the lowest value of the VKPca pp
key version.

If there is not match then an error response
must be returned with the appropriate
response code.

7.2.1.3 The Get Key Check Value response must
conform to the format defined in Table 62.

Table 62: Response to Get Key Check Value command

Field Value Length
Destination Address Any 2
Source Address '0301' 2
Message Type 'FF' 1
ID7hreAD Thread Identifier of the request 1
Loata '0013' + Nyp 2
IDppcreaToR Identifier of the PIN Pad Creator 4
IDpp Identifier assigned to the SCD/PIN Pad by the PIN 4

Pad Creator

Nykp Number of CA PSAM Public Keys contained in the 1
SCD/PIN Pad

VKPca, psam Key versions of the CA PSAM Public Keys contained Nykp
in the PIN Pad

VKPca, pp Key version of the CA PP Public Key that must be 1

used to verify the PIN Pad Creator Certificate.

CHALLENGEpp Any non-repeating or random 4-byte value 4
generated by the SCD/PIN Pad

KCVpp Key Check Value 3
Response Code Response Code 2
7.21.4 The Response Codes applicable to the Get Key

Check Value command are defined in Table 63.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

73

October 2013

TAPA Application Architecture Version 3.0

7.2.1.

5 To enable the synchronization process to
continue if the Response code is 'FF80', the
response to the Get Key Check Value command
shall contain all data elements defined in Table
62.

Table 63: Response Codes to Get Key Check Value command

Response Code Description

‘FF80’ No KCV available, KSES not present
‘FFO0’ RSA key mismatch. VKP not recognized
‘FFF3’ Handler Error

‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

7.2.2 Get PIN Pad Public Key Record

7.2.2.1 The Get PIN Pad Public Key Record command
must conform to the format defined in Table
64.
Table 64: Get PIN Pad Public Key Record command

Field Value Length

Destination Address '0301" 2

Source Address Any 2

Message Type '67' 1

ID7HReAD Thread Identifier assigned by the MAD-Handler 1

LopaTa ‘0001’ 2

Format Code ‘C2’" = PKCppc, ‘C4" = PKCpp 1

Copyright © 2013 Nets Denmark A/S

All rights reserved.

74

October 2013

TAPA Application Architecture Version 3.0

7.2.2.2 The Get PIN Pad public Key Record response
must conform to the format defined in Table
65.

Table 65: Response to Get PIN Pad Public Key Record command

Field Value Length
Destination Address Any 2
Source Address '0301" 2
Message Type 'FF' 1
ID7hreAD Thread Identifier of the request 1
LpaTa ‘0002’ + Length of Recordpygy 2
Recordpyey Record containing tags, certificate (PKCppc/PKCpp) Var.

and remainder (if present)

See Table 66 and Table 67 for the formats of the

PIN Pad Creator and PIN PAD public key records.
Response Code Response Code 2

Table 66: Contents of PIN Pad Creator Certificate Record

Description Data element Mandatory or Length (bytes)
conditional

Record Tag ‘85’ M 1

Data length Sum of lengths of M 1

succeeding fields

Certification Authority Key | VKPca M 1

version

Length of CA Public Key LPKMca, pp M 1
Modulus

PIN Pad Creator Public Key | PKCppc M LPKMca, pp

Certificate (enciphered)

Rightmost bytes of the PIN | PKRpp¢ C Maximum (0,
Pad Creator Key Modulus LPKMppc + 36 —
LPKMcs, pe)

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 67: Contents of PIN Pad Certificate Record

Description Data element Mandatory or Length (bytes)
conditional

Record Tag ‘85’ M 1

Data length Sum of lengths of M 1

succeeding fields

Length of PIN Pad Creator | LPKMppc M 1

Public Key Modulus

PIN Pad Public Key PKCpp M LPKMppc

Certificate (enciphered)

Rightmost bytes of the PIN | PKRpp C Maximum (O,

Pad Key Modulus LPKMpp +40 —
LPKMepc)

7.2.2.3

The Response Codes applicable to the Get PIN
Pad Public Key Record command are defined in
Table 68.

Table 68: Response Codes to Get PIN Pad Public Key Record command

Response Code Description

‘FF89’ Record not found

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized
‘FFF5’ Handler busy

‘FFF6’ Insufficient resources
‘FFF7’ Handler must be opened
‘FFFB’ Unsupported operation

7.2.3 Verify PSAM Public Key Certificate

7.2.3.1

The Verify PSAM Public Key Certificate

Copyright © 2013 Nets Denmark A/S

All rights reserved.

76

October 2013

TAPA Application Architecture Version 3.0

command must conform to the format defined
in Table 69.

Table 69: Verify PSAM Public Key Certificate Command (PKCycq)

Field Value Length
Destination Address '0301' 2
Source Address Any 2
Message Type '66' 1
ID7HReAD Thread Identifier assigned by the MAD-Handler 1
LpaTa Variable 2
Format Code "A2" = PKCacq 1
‘A4’ = PKCpsam
VKPca, psam Key version of the CA PSAM Public Key 1
LPKM Length of the modulus of the key that signed the 1

certificate: LPKMcp psam OF LPKMacq as appropriate.

PKCaca/psam Public Key Certificate being sent for verification LPKMca,
psam OF

LPKMacq

PKRacqpsam Rightmost bytes of Public Key Modulus being sent May be 0

for verification

For the acquirer certificate, the length is the
maximum of 0 or (LPKMpcq + 41 — LPKMca psam.)

For the PSAM certificate, the length is the
maximum of 0 or (LPKMpsam + 45 — LPKMpcq.)

7.2.3.2 The Verify PSAM Public Key Certificate response
must conform to the format defined in Table
70.

7.2.3.3 The PIN Pad must return the appropriate

Response Code if the Verify PSAM Public Key
Certificate command has not been processed
correctly.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 70: Response to Verify PSAM Public Key Certificate command

Field Value Length
Destination Address Any 2
Source Address '0301' 2
Message Type 'FF' 1
ID7HReAD Thread Identifier of the request 1
Loata '0002"' 2
Response Code Response Code 2
7.2.3.4 The Response Codes applicable to the Verify

PSAM Public Key Certificate command are
defined in Table 71.

Table 71: Response Codes to Verify PSAM Public Key Certificate command

Response Code Description

‘FF8C’ Certificate Error

‘FF8D’ Hash algorithm not supported
‘FF8E’ PK Algorithm not supported
‘FF8F’ Hash result invalid

‘FFOO’ RSA key mismatch. VKP not recognized
‘FF9Y’ Certificate format error

‘FF92’ Certificate expired

‘FF93’ Certificate ID mismatch

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized
‘FFF5’ Handler busy

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

79

Response Code

Description

‘FFF6’ Insufficient resources
‘FFF7’ Handler must be opened
‘FFFB’ Unsupported operation

7.2.4 Submit Initial Key

7.24.1

7.2.4.2

The Submit Initial Key command must conform

to the format defined in Table 72.

In order to generate the PS signature, the PSAM

must perform the following steps.

1.

Compute the “Hash Result” by using the
SHA-1 algorithm on the data defined in
Table 76.

Note that the PIN Pad data (PIN Pad
Identification and CHALLENGEpp) are
retained from the response to the Get Key
Check Value at the beginning of the
synchronization sequence.

Generate a digital signature “DS” on the
data shown in Table 75, using the PSAM
private key.

Split the digital signature into two
components: a 96-byte DS; and a remainder
DSgem.

DS = DS, | | DSgem

Generate the DS, by padding the DSggm With
sufficient bytes of binary zeros to create a
96-byte string.

DSZ = DSREM | | '0000’

Apply the Padding function defined in
section 14.7.8 to each of the two DS
components, using L=LPKMpp.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

PDS; = PAD(DS))

6. Encrypt the results using the PIN Pad’s
public key, to generate the two signatures,

PS; and PS,.

| PS; := RSAencipher(PKep)[PDS}]

7. Theresult (PS =PS; || PS,) is sent to the PIN
Pad in the Submit Initial Key command.

Table 72: Submit Initial Key command

PSAM

Field Value Length
Destination Address '0301' 2
Source Address '00pp' where pp is the sub-address assigned to the 2
PSAM
Message Type '68' 1
ID1hreAD Thread Identifier assigned by the MAD-Handler 1
LoaTa ‘000D’ + 2*LPKMpp (length of the modulus of the 2
PIN Pad Public Key)
RIDpsam RID used by the PSAM Creator 5
IDpsaMCREATOR Unique identifier of the PSAM Creator 4
IDpsam Unique identifier of the PSAM 4
PS PS; || PS,, Enciphered digital signature of the 2*LPKMpp

7.243 The Submit Initial Key response must conform
to the format defined in Table 73.
7.2.4.4 In order to decrypt and verify the encrypted

digital signature (PS) and recover the Initial

Session Key (KSESnit), the PIN Pad must

perform the following steps.

1. Recover the padded digital signatures PDS;
and PDS, by decrypting each of the PS
components, using its own private key.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

PDS; := RSAdecipher(SKpp)[PS;]

Recover each value DS; from PDS; as defined
in Section 14.7.8.

Reconstruct the signature DS by
concatenating DS; and DS,, and taking the
first LPKMPSAM bytes.

DS := DSy | | DSgem = LPKMpsam bytes (DS; | |
DS,)

Recover the signed data in Table 75 using
the PSAM’s public key to verify the DS.

Validate the signed data to ensure that the
header, format code and trailer all contain
valid data as specified in Table 75.

Construct the DSHash as specified in Table
76, and perform the SHA-1 algorithm. The
signature is verified by comparing the result
to the Hash Result in the signed data
previously recovered.

HashResult:= SHA-1(DSHash).

Note that the data from the PSAM (PSAM
Identification and CHALLENGEpsan) are
retained from the Get Key Check Value
command received at the beginning of the
synchronization sequence.

If all the above checks are successful then
KSESni7 is accepted and synchronization is
complete.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

81

October 2013

TAPA Application Architecture Version 3.0

Table 73: Response to Submit Initial Key command

Field Value Length

Destination Address '00pp' where pp is the sub-address assigned to the 2
PSAM

Source Address '0301' 2

Message Type 'FF' 1

ID7HReAD Thread Identifier of the request 1

Lpata '0005' 2

KCVpp Key Check Value derived as specified in Table 79 3
using the KSES,yr.

Response Code Response Code 2

7.2.4.5 The Response Codes applicable to the Submit

Initial Key command are defined in Table 74.

Table 74: Response Codes to Submit Initial Key command

Response Code Description

‘FF83’ PSAM Identifier not recognized
‘FF8A’ Signature Error

‘FF8B’ Hash Error

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized
‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 75: Format of Data Recovered from DS

Field Content/Source Length (bytes)
Header ‘A 1
Format code ‘89’ 1
ALGH Code for the algorithm used to produce the hash (‘01" for | 1
SHA-1)
KSESnit Initial Session Key produced by PSAM 16

Pad Pattern

Successive bytes containing ‘BB’

LPKMpsap — 40

Hash Result Hash of signed data, see Table 76 20
Trailer ‘BC 1
Table 76: Contents of the DS Hash
Field Content/Source Length (bytes)
Format code ‘89' 1
ALGH Code for the algorithm used to produce the hash (‘01" for | 1
SHA-1)
KSESnit Initial Session Key produced by PSAM 16

Pad Pattern

Successive bytes containing ‘BB’

LPKMpsap — 40

PIN Pad
Identification

IDppcreaToOR Identifies the PP Creator 4
IDpp Identifies the SCD/PIN Pad 4
CHALLENGE,; Challenge from SCD/PIN Pad 4

Copyright © 2013 Nets Denmark A/S
All rights reserved.

83

October 2013

TAPA Application Architecture Version 3.0

Field Content/Source Length (bytes)
PSAM Identification
RIDpsam RID used by the PSAM Creator 5
IDpsamCREATOR Identifier of the PSAM Creator 4
IDpsam Identifier of the PSAM 4
CHALLENGEpsam Challenge from the PSAM 4

7.2.5 Initiate PIN Entry

7.25.1 The Initiate PIN Entry command must conform

to the format defined in Table 77.

Table 77: Initiate PIN Entry command

Field Value Length
Destination Address '0301' 2
Source Address Any 2
Message Type '69' 1
ID7hReAD Thread Identifier assigned by the MAD-Handler 1
LoaTa ‘0023’ 2
PIN Pad Identification

IDppcreaToR Unique identifier of the PIN Pad Creator 4

IDpp Unique identifier of the PIN Pad 4
PSAM Identification

RIDpsam RID used by the PSAM Creator 5

IDpsamCREATOR Unique identifier of the PSAM Creator 4

IDpsam Unique identifier of the PSAM 4
KCVpsam Current Key Check Value calculated by the PSAM 3
Min PIN Digits Minimum number of PIN digits (04’ — ‘0C’) 1

Copyright © 2013 Nets Denmark A/S

All rights reserved.

84

October 2013

TAPA Application Architecture Version 3.0

Field

Value

Length

Max PIN Digits

Maximum number of PIN digits (04’ — ‘0C’)

Number of PIN entries

‘x0" — ‘xE’ and ‘xF’.

85

left

The high-order nibble (as indicated by the ‘x’) is
reserved for proprietary coding. The low-order
nibble indicates the number of PIN entry attempts
that remain. An ‘F" in the low-order nibble
indicates that this information shall not be
displayed.

MAC pe

MAC on the preceding data elements (Destination 8
Address — Number of PIN Entries left) computed
using KSESyac

7.2.5.2

7.2.5.3

The Initiate PIN Entry response must conform
to the format defined in Table 78.

Prior to generating or verifying the MACpe in the
Initiate PIN Entry command, the PSAM and the
Secure Cryptographic Device must each derive a
new set of PIN session keys from the previous
set. A new Key Check Value (KCV) for the
Transaction Session Key (KSES) must also be
calculated. The algorithms for deriving the new
session keys, and for calculating the new check
value, are specified in Table 79. As part of this
derivation, each key (i.e. KSESnew, KSESpn,
KSESDATA, KSESCDP and KSESMAc) must have its
bytes adjusted for odd parity.

Note that the Initial Session Key (KSESy7)
established during synchronization is only used
to derive the first set of PIN Session Keys, and
the KCVpp returned in the response to the
Submit Initial Key command.

Note: Each byte in a key with odd parity must
have an odd number of one-bits. Parity is
adjusted by changing the low order (rightmost)
bit. An example of a key without odd parity is
‘1122 33 44 55 66 77 88°. The same key
adjusted for odd parity is ‘10 23 32 45 54 67 76
89"

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 78: Response to Initiate PIN Entry command

Field Value Length
Destination Address Any 2
Source Address '0301' 2
Message Type 'FF' 1
ID7HReAD Thread Identifier of the request 1
Loata '000A' 2
MAC per MAC on the MAC ¢ from the command, computed 8
using KSESyac
Response Code Response Code 2
Table 79: SCD Session Key Derivation
Key Value Length
KSESew DES3(KSESop)[D.] | | DES3(KSEScip)[DRl 16
D, IDpp | | "FO 00 00 0O' 8
Dg IDpp | | 'OF 00 00 00' 8
KCVnew 3MSB{ DES3(KSESyew)['00 00 00 00 00 00 00 00']} 3
KSESpin DES3(KSESnew)[DP] | | DES3(KSESyew)[DPR] 16
DP, 'FF FF 00 00 00 00 00 00" 16
DPg 'FO FO 00 00 00 00 00 00 16
KSESmac DES3(KSESnew)[DM,] | | DES3(KSESnew)[DMg] 16
DM, 'FO OF 00 00 00 00 00 00' 16
DMg '0OF FO 00 00 00 00 00 00' 16
KSESpara DES3(KSESnew)[DD,] | | DES3(KSESyew)[DDg 16
DD, 'FO FO 00 00 00 00 00 00' 16
DDy 'OF OF 00 00 00 00 00 00' 16

Copyright © 2013 Nets Denmark A/S
All rights reserved.

86

October 2013 87

TAPA Application Architecture Version 3.0

Table 80: CDP Key Derivation

Key Value Length
KSEScop DES3(KSES)[Dicoe] | | DES3(KSES)n)[Dreppl 16
Dicor IDpp | '00 FO 00 00" 8
Dreop IDpp | | '00 OF 00 00' 8
7.25.4 The Response Codes applicable to the Initiate

PIN Entry command are defined in Table 81.

Table 81: Response Codes to Initiate PIN Entry command

Response Code Description

‘FF81’ Wrong PIN Pad ID

‘FF82’ Authentication Error (MAC validation failed)
‘FF83’ PSAM Identifier not recognized

‘FF84’ Parameters out of range

‘FF85’ Key Check values not identical, synchronization necessary
‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized

‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

7.2.6 Get PIN

7.2.6.1 The Get PIN command must conform to the
format defined in Table 82.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 82: Get PIN command

Field Value Length
Destination Address '0301' 2
Source Address Any 2
Message Type '6A' 1
ID7hReAD Thread Identifier assigned by the MAD-Handler 1
Loata ‘000D’ 2
Timer Flag ‘00’ = Not Timed 1
‘80" = Timed
Time Time-out value in milliseconds 4
MACgp MAC on the preceding data elements (Dest. 8
address — Time) computed using KSESyac

c{Nn]|p|P|P]|P|rPF|PF|PF|PF|PF|PF|PF|PF| F |F

Figure 7: PIN Block Format

Table 83: Definition of PIN block format

Name Value
C Control field 4-bit binary control field. Shall be ('2')
N PIN length 4-bit binary number with permissible

values of '4'-'C'

P PIN digit 4-bit binary number with permissible
values of '0'-'9'

P/F PIN/Filler Determined by PIN length
F Filler 4-bit binary number with value 'F'
7.2.6.3 The Get PIN response must conform with the

format defined in Table 84.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 84: Response to Get PIN command

Field Value Length
Destination Address Any 2
Source Address ‘0301' 2
Message Type 'FF' 1
ID7hreAD Thread Identifier of the request 1
LoaTa '001A' 2
Enc(KSESpara)[Data] Data consisting of the following

RND(8) Random Data 8

Enc(KSESpy)[PIN]] PIN block encrypted under KSESpy transferred 8

concatenated with random number in
envelope encrypted under KSESpara.

See Figure 8 and Table 83 for the format of
the PIN Block. No padding is included.

MACggp

MAC on ENC(KSESpy) | | MACgp (from the 8
command), computed using KSESyac

Response Code

Response Code 2

7.2.6.4

7.2.6.5

7.2.6.6

The PIN Pad must be capable of generating the
Response Codes to the Get PIN command as
defined in Table 85.

The plaintext PIN block format to be enciphered
must be formatted as shown in Figure 8 and as
specified in reference 6, EMV (section 2.4.12).

The Response Codes applicable to the Get PIN
command are defined in Table 85.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

89

October 2013

TAPA Application Architecture Version 3.0

Table 85: Response Codes to Get PIN command

Response Code Description

‘FF82’ Authentication Error (MAC validation failed)
‘FF86’ PIN not available

‘FF87’ Secure Cryptographic Device not in PIN Entry State
‘FFF2’ Time-out

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized

‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

7.2.7 Terminate PIN Entry

7.2.7.1 The Terminate PIN Entry command must

conform to the format defined in Table 86.

Table 86: Terminate PIN Entry command

Field Value Length
Destination Address '0301' 2
Source Address Any 2
Message Type '6C' 1
ID7HReAD Thread Identifier assigned by the MAD-Handler 1
Lpata ‘0015’ 2
PIN Pad Identification

IDppcreaTor Unique identifier of the PIN Pad Creator 4

Copyright © 2013 Nets Denmark A/S

All rights reserved.

90

October 2013

TAPA Application Architecture Version 3.0

Field Value Length
IDpp Unique identifier of the PIN Pad 4
PSAM Identification
RIDpsam RID used by the PSAM Creator 5
IDpsamCREATOR Unique identifier of the PSAM Creator 4
IDpsam Unique identifier of the PSAM 4

The Terminate PIN Entry response must conform to the format defined in

7.2.7.2 Table 87.

Table 87: Response to Terminate PIN Entry command

Field Value Length
Destination Address Any 2
Source Address '0301' 2
Message Type 'FF' 1
ID7hreAD Thread Identifier of the request 1
Loata '0002"' 2
Response Code Response Code 2

7.2.7.3

Table 88.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

The Response Codes applicable to the
Terminate PIN Entry command are defined in

91

October 2013

TAPA Application Architecture Version 3.0

Table 88: Response Codes to Terminate PIN Entry command

Response Code Description

‘FF81’ Wrong PIN Pad ID

‘FF83’ PSAM Identifier not recognized
‘FF87’ Secure Cryptographic Device not in PIN Entry State
‘FF88’ Termination Failed

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized
‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

7.3 Summary

Table 89: User Interface-Specific commands

Destination Source Message Type | Description

Address Address

'0300" Any '60' Confirm Amount

'0304' Any '61' Display a predefined message
'0302' Any '63' Print a predefined message
'0302' Any '64' Purge print buffer

'0300" Any '80' Get Amount

‘0300’ Any ‘82’ Funds Available

‘0301’ Any ‘65’ Get Key Check Value

‘0301’ Any ‘67’ Get PIN Pad Public Key Record

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Destination Source Message Type | Description

Address Address

‘0301’ Any ‘66’ Verify PSAM Public Key Certificate
‘0301’ Any ‘68’ Submit Initial Key

‘0301’ Any ‘69’ Initiate PIN Entry

‘0301’ Any ‘BA’ Get PIN

‘0301’ Any ‘6C’ Terminate PIN Entry

Copyright © 2013 Nets Denmark A/S
All rights reserved.

93

October 2013

94

TAPA Application Architecture Version 3.0

8. The Merchant Application Handler

The Merchant Application Handler is responsible for managing
the interface to all merchant-related equipment and
peripherals, which may include the merchant display, printer,
or merchant keypad.

In addition to the common Handler commands provided in
Section 4.4, the Merchant Application Handler must support
the command set documented in this section. Additional
implementation specific functions may be performed by the
Merchant Application Handler, but are outside the scope of
this specification.

8.1 Messages sent to the Merchant Application

Handler

This section provides a list of additional commands that should
be accepted and processed by the Merchant Application
Handler.

The Get Amount commands consist of the basic Get Amount
command and the Get Amount Enhanced command in which
additional transaction specific data may be exchanged using
the Discretionary Data field. The definition of the Discretionary
Data may be different for command and response. Which
version of the Get Amount command to use is application
specific.

8.1.1 Get Amount

8.1.1.1 The Get Amount command must conform to
the format defined in Table 90.

Table 90: Get Amount command

Field Value Length
Destination Address ‘0300’ or '0400 2
Source Address Any 2
Message Type '80' 1
ID7hreAD Thread Identifier assigned by the MAD-Handler 1
Loata '0009' or ‘0011' 2

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

95

Field Value Length
Timer Flag ‘00’ = Not Timed 1
‘80’ = Timed
Time Time-out value in milliseconds 4
Display Message Code | Code indicating the message to be displayed (see 1
Table 177)
‘00’ indicates that no message is to be displayed.
CURR Currency Code and exponent 3
SPyac MAC on Destination Address — CURR, computed Oor8
using KSESyac-

8.1.1.2

8.1.1.3

8.1.1.4

8.1.1.5

8.1.1.6

The Get Amount response must conform to the
format defined in Table 91.

If the currency code and exponent in the
command were zeros, then the Merchant
Application Handler must return the currency of
the amount in the response.

If the merchant application must display a
message to the merchant or the user for
amount entry, the Display Message Code
indicates the message to be displayed.

If the Merchant Application does not use a
display to request an amount entry, and the
command issued contained a Display Message
Code, but the amount was still successfully
entered, the Response Code ‘successfully
processed’ must only be returned in the case
where the merchant application automatically
replies to the command (for example, in a
vending machine).

If a display is used in the Get Amount process
and the Merchant Application Handler does not
recognize the Display Message Code, a
Response Code ‘FF34’ must be returned. In this
case the amount returned, if any, is not reliable.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 91: Response to Get Amount command

Field Value Length
Destination Address Any 2
Source Address '0400' 2
Message Type 'FF' 1
ID7HReAD Thread Identifier of the request 1
Lpata 0009’ 2
Transaction Amount Transaction Amount 4
CURR Currency Code and exponent 3
Response Code Response Code 2
8.1.1.7 The Response Codes applicable to the Get

Amount command are defined in Table 92.

Table 92: Response Codes to Get Amount command

Response Code Description

‘FF34’ Unknown Message Code

‘FF40’ Invalid Currency

‘FF41’ Invalid Currency Exponent

'FFF2' Time-out: the requested operation is valid, but some external

event necessary for the proper execution failed to arrive in time;
or merchant or cardholder requests a cancellation.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.
'FFF5' Handler busy: the Handler received the message but is unable to

process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

8.1.2

Response Code Description
'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.
‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.
Get Amount Enhanced
8.1.2.1 The Get Amount Enhanced command must
conform to the format defined in Table 93.
Table 93: Get Amount Enhanced command
Field Value Length
Destination Address ‘0300’ or '0400' 2
Source Address Any 2
Message Type '80' 1
ID7hreAD Thread Identifier assigned by the MAD-Handler 1
LpaTa '000A’ or ‘0012 + Length of Discretionary Data 2
Timer Flag ‘00" = Not Timed 1
‘80" = Timed
Time Time-out value in milliseconds 4
Display Message Code | Code indicating the message to be displayed (see 1
Table 177)
‘00’ indicates that no message is to be displayed.
CURR Currency Code and exponent 3
LENpp Length of Discretionary Data 2
Discretionary Data Discretionary Data variable
SPmac MAC on preceding data elements [Destination Oor8
Address — Discretionary Data], computed using
KSESmac-
8.1.2.2 If the Destination Address is '0300', the MAC

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

must be included.

8.1.2.3 The requirements for the Get Amount
command cover the Get Amount Enhanced
command, too.

8.1.2.4 The Get Amount Enhanced response must
conform to the format defined in Table 94.

Table 94: Response to Get Amount Enhanced command

Field Value Length
Destination Address Any 2
Source Address ‘0300’ or '0400 2
Message Type 'FF' 1
ID7hreAD Thread Identifier of the request 1
LpaTa ’000B’ or ‘0013’ + Length of Discretionary Data 2
Transaction Amount Transaction Amount 4
CURR Currency Code and exponent 3

LENpp Length of Discretionary Data 2

E.g. Amount Other.

Discretionary Data Discretionary Data variable

SPmac If Source Address is ‘0300’, MAC included. Oor8

MAC on preceding data elements [Transaction
Amount — Discretionary Data] | | SPyac (from the
command), computed using KSESyac.

Response Code Response Code 2
8.1.2.5 The Response Codes applicable to the Get
Amount Enhanced command are defined in
Table 95.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

98

October 2013

TAPA Application Architecture Version 3.0

8.1.3

Table 95: Response Codes to Get Amount Enhanced command

Response Code

Description

‘FF34’ Unknown Message Code

‘FFAQ’ Invalid Currency

‘FF41’ Invalid Currency Exponent

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or

an associated data set that was unrecognized or unsupported.

Transaction Completed
The Transaction Completed command is issued to the

Merchant Application Handler to inform it of the completion

status of a specified transaction.

8.1.3.1

Table 96: Transaction Completed command

The Transaction Completed command must
conform to the format defined in Table 96.

Field Value Length
Destination Address '0400' 2
Source Address Any 2
Message Type ‘81’ 1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

99

October 2013

TAPA Application Architecture Version 3.0

Field Value Length
ID7hreAD Thread Identifier assigned by the MAD-Handler 1
Loata '0001' 2
Transaction Results ‘00’ = Transaction Successful 1

‘01’ = Transaction Failed

All other values are reserved for future use.

8.1.3.2 The Transaction Completed response must
conform to the format defined in Table 97.

Table 97: Response to Transaction Completed command

Field Value Length

Destination Address Any 2

Source Address '0400' 2

Message Type 'FF' 1

ID1HREAD Thread Identifier of the request 1

Loata '0002’ 2

Response Code Response Code 2

8.1.3.3 The Response Codes applicable to the

Transaction Completed command are defined
in Table 98.

Table 98: Response Codes to Transaction Completed command

Response Code Description

'FF42' Invalid Transaction Results value

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

100

October 2013 101

TAPA Application Architecture Version 3.0

Response Code Description

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and

therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

8.1.4 Funds Available

The Funds Available command may be used to inform the
Merchant Application of the funds available to make a
purchase.

8.1.4.1 The Funds Available command must conform to
the format defined in Table 99.

Table 99: Funds Available command

Field Value Length
Destination Address '0400' 2
Source Address Any 2
Message Type '82' 1
ID7hreAD Thread Identifier assigned by the MAD-Handler 1
Lpata '0008' 2
Amount Amount of funds available 4
CURR Currency Code and exponent 3
8.1.4.2 The Funds Available response must conform to

the format defined in Table 100.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 102

TAPA Application Architecture Version 3.0

Table 100: Response to Funds Available command

Field Value Length
Destination Address Any 2
Source Address '0400' 2
Message Type 'FF' 1
ID1HREAD Thread Identifier of the request 1
Loata ’0002’ 2
Response Code Response Code 2
8.1.4.3 The Response Codes applicable to the Funds

Available command are defined in Table 101.

Table 101: Response Codes to Funds Available command

Response Code Description

‘FF40’ Invalid Currency

‘FF41’ Invalid Currency Exponent

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to

process it at this moment. The requesting Handler must try again
later

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

8.1.5 Display Message

The Display handler must be able to receive and process the
Display Message commands, which are defined in section
7.1.1.

8.1.6 Print commands
The Printer handler must be able to receive and process the

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Print Message and Purge Print Buffer commands, which are

defined in sections 7.1.2 and 7.1.4.

8.2 Summary

Table 102: Merchant Application Handler-Specific commands

Destination Source Message Type | Description

Address Address

'0404' Any '61' Display a predefined message
'0402' Any '63' Print a predefined message
'0402' Any '64' Purge print buffer

'0400' Any '80' Get Amount

‘0400’ Any ‘81’ Transaction Completed
‘0400’ Any ‘82’ Funds Available

Copyright © 2013 Nets Denmark A/S
All rights reserved.

103

October 2013

TAPA Application Architecture Version 3.0

9. The PSAM Handler

The PSAM Handler is responsible for managing the interface to
any number of PSAMs that may be resident in the terminal.

The interface between the PSAM Handler and the PSAM is a
standard command/response protocol as defined in reference
3, ISO/IEC 7816-4 and reference 6, EMV Part Il, section 2.1.
The PSAM is usually implemented as a processor card, where
the technical interface is either T=0 or T=1, as defined in
reference 2, ISO/IEC 7816-3 and reference 6, EMV Part |.
However, it is possible to implement a PSAM in an alternative
manner, such as in a Hardware Security Module (HSM) to
support a server or other high-volume system.

The PSAM may perform any combination of the following
services:

e Be the storage medium where application specific code is
stored and executed to perform one or more business
functions such as CEP, EMV or any other application, and
hence effectively run the application.

e Provide specialized cryptography services for one or more
payment applications.

e Provide generic (e.g. ISO/IEC DIS 7816-8) cryptography
services.

9.1 Message Handling

The PSAM Handler interface to the PSAM is more complex
than that between the Card Handler and the processor card.
While the PSAM does use the standard command/response
protocol, it can have broader functionality than a normal
“smart card” as used for a consumer card application.

The two principal features of a PSAM, which the PSAM
Handler must cater to, are:

1. The MAD Handler may delegate control over the terminal
processing to the PSAM. In this case, the PSAM must be
able to send commands to other terminal devices and
receive their responses. These commands from the PSAM
are known as “derived commands”.

2. The PSAM may be “multi-threaded”, handling several
concurrent transactions (each with a different IDtyrean),
each in a different state of completion.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

104

October 2013

TAPA Application Architecture Version 3.0

9.1.1 Messages sent to the PSAM Handler

The PSAM Handler must be able to process all of the ICC-
related commands supported by the Processor Card Reader
that are listed in Table 103.

The handler for each individual PSAM must be able to process
all the commands supported by the Processor Card Reader.
However, the treatment of the command and its response
might be different.

The next section describes how a Terminal Message which
conveys an ICC command (Message Type = ‘42’), or a response
from another device (Message Type = ‘FF’), is transformed to a
Command APDU for the PSAM as defined in reference 3,
ISO/IEC 7816-4.

Table 103: ICC Commands supported by PSAM Handler

Message Type | Description
'42' ICC Command
'43' ICC Power-On
‘a4 ICC Power-Off
'45’ ICC Query

9.1.2 Messages sent to the PSAM

The PSAM Handler will receive messages that are intended for
delivery to a PSAM (as opposed to the PSAM Handler itself), in
one of the following message structures:

e PSAM Command: Message Type ‘42’ indicates A PSAM
command. In this case, the Message Data field contains a
complete C-APDU that must be forwarded to the PSAM.

e Response Message: Message Type ‘FF’ indicates a
response message from another terminal device. These
are received if the PSAM has previously originated a
derived command to the responding device.

Figure 9 illustrates the message translation that is performed
by the PSAM Handler for commands sent to the PSAM.

9.1.21 If present, the L. must be coded on one byte.
The Le must always be present and be coded on
one byte with the value ‘00’.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

105

October 2013

106
TAPA Application Architecture Version 3.0
Source Handler PSAM-Handler PSAM
If Message Type is an ICC command
>
DAD [SAD [MT [IDrugeao | Loata | C-APDU
00pp | any | ‘42’ | *nn’ DATA | CLA [INS [P1P2 L. | DATA L
length
If MT ='42', PSAM-H retains SAD &
1D 4rean @nd forwards C-APDU
-
[c-APDU |
[CcLA TINS [PiP2 [L. [DATA JL. |

PSAM locates 1D penp
(in P1 or in byte 1 of
DATA as required for the
INS) and selects

application.
If Message Type is aresponse
DAD SAD | MT IDrhRreAD Lpata DATA —
00pp any ‘FF* | ‘nn’ DATA | data string
length trailed with
RC from
the sending
Handler
PSAM-H has to construct a
C-APDU and put DATA in it
>
C-APDU
CLA INS P1P2 Lc DATA Le
‘B0’ ‘FE’ 1dtHreaD
I
‘00’/°01°

PSAM locates ID; eenp in P1
PSAM checks for P2="01" to
determine if more data is to be

sent

Figure 9: Message Translation for commands to PSAM

9.1.2.2

9.1.2.3

When the PSAM Handler receives an ICC

command (Message Type ‘42’) it must forward
the C-APDU contained within the message to
the PSAM. The Source Address and IDtyreap in
the message must be retained in order to route
correctly the subsequent response from the

PSAM.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

When the PSAM Handler receives a response

October 2013 107

TAPA Application Architecture Version 3.0

message (Message Type ‘FF’), it must construct
a Response Command APDU as shown in Table
118 and send this command to the PSAM.

9.1.24 If the Lpata field in a Response Message exceeds
248 bytes, the PSAM Handler must deliver the
response in multiple response commands. In
such a response command, the PSAM Handler
must set the value of P2 equal to ‘01’. If P2
equals ‘01’, then the L. of the response
command must be 248"

9.1.2.5 The PSAM Handler must continue sending
response commands with P2 = 01 until the
remainder of the data to be sent does not
exceed 248 bytes. The final response command
of the series must use P2 = 00.

9.1.2.6 If the PSAM Handler receives a command for a
PSAM (Message Type ‘42’) and the C-APDU
cannot be successfully forwarded to the PSAM,
the PSAM Handler must reply to the originator
of the command with the appropriate Response
Code.

9.1.3 Messages from the PSAM

The PSAM will output all messages in the form of Response
APDUs. For derived commands being sent to other terminal
devices, the data portion of the Response APDU will be in the
Terminal Message format, ready to be delivered to the
addressed handler. For response messages, the PSAM Handler
must insert the correct destination address, and a Response
Code, prior to forwarding the message.

Figure 10 illustrates the message translation performed by the
PSAM handler when Response APDUs are received from the
PSAM.

1
Note that this applies only to response messages (MT = ‘FF’). Some application designs will require that data be sent
to the PSAM application in commands, which exceed the amount that can be accommodated in a single C-APDU. In

this case, the application design must provide the ability to send the information in multiple command APDU’s.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

108
TAPA Application Architecture Version 3.0
Dest Handler PSAM-Handler PSAM
PSAM generates
derived or
response
commands
-
R-APDU
DATA SW1sw2
DAD SAD MT ID1HREAD Lpata DATA
Undetermined if 00pp length of DATA Data appropriate determined by
MT = ‘FF* (If MT = ‘FF’, to the MT. PSAM
augmented by 2
to include
eventual addition
of RC),

-

note :

is not

If SW1SW2 ='9601', PSAM Handler must send Get Next command to
retrieve additional data.

if MT = 'FF', then PSAM-H must :

a. set DAD = the SAD for the corresponding 1D, retained when
command for PSAM was received (MT = '42")

b. replace SW1SW2 with its own RC

c. leave the rest of the message as is and forward it

if MT # 'FF', then the PSAM-H must :

a. drop SW1SW2
b. leave the rest of the message as is and forward it

present, in which case PSAM-H takes no further action as the 1Dy o 0p

if SW1SW2 is # '9000' or '9601', then only the SW1SW2 will be

known.

R-APDU

DATA

DAD

SAD

MT

IDrHReEAD

Loata | DATA | RC

SAD retained
by PSAM-H

00pp

determined by
PSAM-H

OR

R-APDU

DATA

DAD

SAD

MT

IDrHRreAD

Loara | DATA

DAD set by
PSAM

00pp

Not

FF?

Figure 10: Message Translation for response from PSAM

9.13.1

9.1.3.2

The PSAM must send all derived commands in
the form of a Response APDU. The data portion
must be in Terminal Message format, ready to
be forwarded to the recipient. The source
address must specify the sub-address assigned
to the PSAM, the destination address must be
the intended recipient, and the IDyreap Must be
that assigned by the MAD Handler.

The PSAM must send all response messages in
the form of a Response APDU. The data portion
must be in the Terminal Message format, but
without the Response Code. The source address
must specify the sub-address assigned to the
PSAM, and the IDyreap Must be that assigned

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 109

TAPA Application Architecture Version 3.0

by the MAD Handler.

9.1.3.3 If the amount of data to send is greater than
252 bytes, the PSAM must deliver the data in
multiple response APDUs. All but the last one
have SW1SW1 = ‘9601’, indicating more data is
to come. The last response APDU must have
status bytes SW1SW2 = ‘9000’, indicating all
data is sent successfully.

9.1.34 On receipt of an SW1SW2 = ‘9601’, the PSAM
Handler must send a “Get Next” command,
requesting further data. The Get Next
command is detailed in Section 10.3.6.

9.1.3.5 The PSAM Handler must concatenate the series
of responses until all data is received or the Get
Next command is rejected.

9.1.3.6 When the PSAM Handler has received the
complete response from the PSAM, the PSAM
handler must forward the message to the
assigned destination address.

If the Message Type is different from ‘FF’, the
PSAM Handler passes the message unaltered to
the router.

If the Message Type = ‘FF’, then prior to
forwarding the message, the following
modifications must be made:

e the PSAM Handler must set the destination
address to the source address saved from
the last PSAM command (Message Type =
‘42’) received for the specified IDtxreaD;

e the PSAM Handler must insert the two byte
Response Code = ‘0000’.

9.1.3.7 If the response from the PSAM does not contain
a valid Terminal Message (that is, the
associated Thread cannot be determined, and
the destination is either not specified or cannot
be derived) the PSAM Handler must not
forward the message.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 110

TAPA Application Architecture Version 3.0

Table 104: Response Codes applicable to PSAM Handler

Response Code Description

'FF23' Card did not respond

'FF24' No card in reader

'FF25' Unrecoverable Transmission error

'FF26' Card buffer overflow

'FF27' Unrecoverable Protocol error

'FF28' Response has no status words

'FF29' Invalid buffer

'FF2A! Other card error

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 111

TAPA Application Architecture Version 3.0

10. PSAM Applications

A PSAM receives incoming commands, and invokes the correct
application for processing based on the contents of the
command.

The specific requirements for individual PSAM applications are
defined in application-specific specifications. This section
defines only the requirements for generic functionality,
common to all applications.

10.1 PSAM Initialization

After a terminal resets a PSAM, the terminal applications must
each initialize the corresponding applications in the PSAM(s)
by sending the Start-up PSAM command. This command
allows the terminal to provide the PSAM with its current
assigned “sub-address”, which must be included in subsequent
messages originated by the PSAM application.

The response to the command contains the PSAM
identification (RIDPSAMl | IDPSAMCREATOR' | |Dp5A|v|) as a first field
and other application specific data following that.

Following the start-up command, each terminal application
may obtain a list of all AIDs, which can be processed by that
specific PSAM application.

Using the list of AIDs supported by the different PSAM
applications, the MAD-Handler can determine the set of AIDs
mutually supported by the terminal and PSAM, and which
PSAM application is to be used for each card AID.

The MAD-Handler applications must each perform any start-up
procedures required by the associated specifications. Those
start-up procedures will be defined in the application
specifications. These application-specific requirements are
outside the scope of this document.

This section provides an overview of the PSAM initialization
sequence. The overall initialization process is described in

section 5.2.

10.1.1.1 On reset, the PSAM will respond with the ATR,
including the Historical Bytes, if any.

10.1.1.2 In the response to the PSAM Startup command,

the PSAM must include the PSAM Identification
(RlD + IDpsamcreaTOR + |Dp5A|\/|) and may include
additional application specific data.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

112

TAPA Application Architecture Version 3.0

10.1.1.3

The PSAM will respond to the Get Supported
AlIDs command with the list of AIDs supported
by that application.

10.2 PSAM Shut-down

The Shutdown Command allows the PSAM application to save
all outstanding data, prior to withdrawal power from the

PSAM.

10.2.1.1

The PSAM must send a successful response,
even if the particular PSAM implementation
does not require any processing as a result of
receiving this command.

10.3 PSAM Commands and Responses

This specification defines the use of commands with CLA byte
‘B0O’. The INS ranges and their usage are defined in Table 105.
Table 106 lists the application-independent commands that
must be supported by the PSAM Manager.

Table 105: CLA/INS Byte Definitions

CLA INS P1-P2 Command
BO ‘00°-2F’ IDpsamarp Generic commands supported by all applications. Commands cannot be
concurrent within the same PSAM application.
IDtyreap Must be in most significant byte of the command data
These commands are defined in this specification.
BO ‘30’-'5F IDpsamarp Application-specific, non-concurrent commands
I7OI_l7EI
IDrhreap Must be in most significant byte of the command data
BO ‘80’-‘8E’ IDpsamarp Application-specific commands for a particular thread.
‘A0’-BE’
ID7yreap Must be in most significant byte of the command data.
BO ‘CO’-‘DE’ IDpsamarp Generic commands supported by all applications, for a particular thread.
These commands are defined in this specification.
IDrhreap Must be in most significant byte of the command data.
BO ‘EQ’-‘FE’ IDrurean || | Generic commands supported by all applications, for a particular thread.
1001/101:

These commands are defined in this specification.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

113

Table 106: Application-Independent PSAM Commands

CLAINS Command Description

‘B0 02’ Start-up PSAM Used to exchange identification information with the PSAM
application

‘B0 04’ PSAM Shutdown Informs the PSAM application that power will be withdrawn and
allows it to prepare for subsequent re-start.

‘B0 08’ Get Supported AlDs Obtains the set of AIDs supported by the PSAM application.

‘B0 C2’ Synchronize PSAM/PIN Pad Instructs the PSAM application to synchronize with the PIN Pad/SCD.

‘BO FC' Get Next Used to obtain the next incremental response from the PSAM.

‘BO FE’ Response Command Used to convey to the PSAM responses received from other terminal

devices.

10.3.1 Message Formats

All commands must be delivered to the PSAM in the form of
Command APDUs.

Commands from the terminal application (in the MAD-
Handler) must be sent to the PSAM Handler in an ICC
command Terminal Message (Message Type ‘42’). The PSAM
sends all responses to these commands in the form of
Response Messages (Message Type ‘FF’) embedded within
Response APDUs.

The PSAM Handler itself generates two types of commands to

the PSAM.

e The Response Command is used to forward to the PSAM
response data received from another terminal device

e The Get Next Command is used to retrieve continuation
data when the PSAM is sending more data than can be
fitted into a single R-APDU.

Sections 9.1.2 and 9.1.3 specify the PSAM-Handler
requirements for handling these messages.

A successful response to the MAD-Handler will be in the
“nominal” formats shown for each defined command. The
general format for a successful response is shown in Table
107. An error response will be as defined in Table 108.

Note that there are two types of error response that the PSAM

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013 114

TAPA Application Architecture Version 3.0

may send:

e [f the error was detected by the PSAM application (for
example, a data format error in the command from the
MAD Handler application), the PSAM will respond with a
full Terminal Message containing an Application Status
Word different from ‘0000’. Additionally, the response
may also contain application specific error information
(Error Response Data).

e If an error was detected on transport layer, the PSAM may
only respond with SW1SW?2.

Note: For PSAM application commands (which originate from
the terminal application), this section documents the command
and response formats as sent and received by the terminal
application. To aid PSAM developers and designers, the part of
the message exchanged between the PSAM and PSAM Handler
is shaded.

For the two PSAM-Handler-originated commands, the C-APDU
format is shown.

Table 107: Successful response to PSAM application command

Field Value Length (bytes)
Destination Address | Destination Address from the command message 2
Source Address ‘O0pp’ where pp is the sub-address assigned to the PSAM 2
Message Type ‘FF 1
ID1HReAD Thread Identifier of the request 1
Lpata ‘0004’ + Length of the response data. 2
Response Data Response Data as defined for each PSAM command var.
ASW1 ASW2 ‘0000’ 2
RC ‘0000’ 2

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

115

Table 108: Error response to PSAM application command

Field Value Length (bytes)
Destination Address Destination Address from the command message 2
Source Address ‘00pp’ where pp is the sub-address assigned to the PSAM 2
Message Type ‘FF’ 1
ID1HREAD Thread Identifier of the request 1
LpaTa ‘0004’ + Length of the Error Response Data. 2
Error Response Data | Application specific data returned in case of error. var.
ASW1 ASW2 Must be different from ‘0000’ 2
RC ‘0000’ 2

10.3.2 Application Status Words

Table 109 lists the Application Status Words that may be
received from the PSAM application in a response to a

command defined in this section.

Table 109: Application Status Words

ASW1 ASW2 | Meaning
‘00’ ‘00’ Successful
all other |RFU
‘01 ‘00’ RFU
‘02’ ‘00’ No information given
‘01 Application not supported
‘02’ Function not supported
‘03’ PIN Pad is unresponsive
‘04’ PIN Pad unable to synchronize
all other |RFU
‘03’-0F all RFU

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

ASW1 ASW2 | Meaning
‘X’ all Application-specific ASWs

20’-60’ all RFU

‘61’-‘6F all Reserved from conveying SW1SW?2 as received from the Processor Card
Reader.

70" ‘90’ all Reserved for future use

‘91’-9F all Reserved from conveying SW1SW2 as received from the Processor Card
Reader.

‘AQ’-‘FF all RFU

10.3.3 Start-up PSAM

The Start-up PSAM command is issued by a MAD Handler
application to exchange identification information about the
PSAM application, and to allow the PSAM application to
perform any necessary initialization

10.3.3.1 The Start-up PSAM command must conform to
the format defined in Table 110.

10.3.3.2 The Start-up PSAM command response must
conform to the format defined in Table 111.

Table 110: Start-up PSAM command

Field Value Length

Destination Address ‘00pp’” where pp is the sub-address assigned to the 2
PSAM

Source Address ‘0100’ for the MAD-Handler’ 2

Message Type ‘42’ 1

ID7hReAD Thread Identifier assigned by the MAD-Handler 1

Lpata ‘0006’ + L, 2

2
Normally PSAM application commands will originate from the terminal application in the MAD-Handler. However,

TAPA does not preclude the ability to send commands from one PSAM to another. In that case, the source address

would be ‘00xx” where xx is the sub-address of the sending PSAM.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

116

October 2013

TAPA Application Architecture Version 3.0

Field Value Length
CLA ‘B0’ 1
INS ‘02’ 1
P1, P2 IDpsamarp 2
L. ‘02’ 1
IDTHREAD Thread Identifier 1
PSAM sub-address ‘pp’ 1
Le ‘00’ 1
Table 111: Start-up Command Response
Field Value Length
(bytes)
Destination Address The PSAM Handler will insert the address of the 2
source of the command.
Source Address ‘00pp’ where pp is the sub-address assigned to the 2
PSAM
Message Type ‘FF’ 1
IDTHREAD Thread Identifier of the request 1
Loata ‘0011’ +Lappjicaitonpata 2
PSAM Identification RIDpsam | | IDpsamcreator || 1Dpsam 13
Application Data Data specific to an IDpsamare Lapplicaiton
Data
ASW1 ASW2 ‘0000’ 2
RC ‘0000’ 2

10.3.4 Get Supported AIDs

The Get Supported AIDs command is issued by the MAD
Handler to retrieve information about the supported AIDs for

a specific PSAM application.

10.34.1

Copyright © 2013 Nets Denmark A/S

All rights reserved.

The Get Supported AIDs command must

117

October 2013

TAPA Application Architecture Version 3.0

10.3.4.2

conform to the format defined in Table 112.

Table 112: Get Supported AIDs Command

The Get Supported AIDs response must
conform to the format defined in Table 113.

Field Value Length
(bytes)
Destination Address ‘00pp’ where pp is the sub-address assigned to the 2
PSAM
Source Address ‘0100’ for the MAD-Handler 2
Message Type ‘42’ 1
ID7hreAD Thread Identifier assigned by the MAD-Handler 1
LoaTa ‘0006’ + L, 2
CLA ‘B0’ 1
INS ‘08’ 1
P1, P2 IDpsamarp 2
L, ‘01’ 1
IDtHreAD Thread Identifier 1
e ‘00’ 1
Table 113: Response to Get Supported AIDs
Field Value Length
(bytes)
Destination Address The PSAM Handler will insert the address of the 2
source of the command.
Source Address ‘O0pp’ where pp is the sub-address assigned to the 2
PSAM
Message Type ‘FF 1
IDtHreAD Thread Identifier of the request 1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

118

October 2013

TAPA Application Architecture Version 3.0
Field Value Length
(bytes)
LpaTa Variable 2
CNTapp Number of AlDs listed in this response 1
The following fields (subscripted by “N”) are
repeated CNT,p times (N=0 to CNT,p)
LENApN Length of Nth AID 1
AlDy Nth AID 5-16
IDscremeN A reference number assigned to AID N by the 1
acquirer.
ASW1 ASW2 ‘0000’ 2
RC ‘0000’ 2
10.3.5 PSAM Shutdown
The PSAM Shutdown command is issued as an instruction to
the PSAM application prior to withdrawing power from the
PSAM.
10.3.5.1 The PSAM Shutdown command must conform
to the format defined in Table 114.
10.3.5.2 The PSAM Shutdown response must conform to

the format defined in Table 115.

Table 114: PSAM Shutdown command

Field Value Length

(bytes)
Destination Address ‘O0pp’ where pp is the sub-address assigned to the 2

PSAM

Source Address ‘0100’ for the MAD-Handler 2
Message Type ‘42’ 1
ID7hReAD Thread Identifier assigned by the MAD-Handler 1
LoaTa ‘0006’ + L, 2

Copyright © 2013 Nets Denmark A/S
All rights reserved.

119

October 2013

TAPA Application Architecture Version 3.0

Field Value Length

(bytes)
CLA ‘B0’ 1
INS ‘04’ 1
P1P2 IDpsamare 2
L. ‘01’ 1
IDTHREAD Thread Identifier 1
L ‘00’ 1

Table 115: Response to PSAM Shutdown command

Field Value Length

(bytes)
Destination Address The PSAM Handler will insert the address of the 2

source of the command.
Source Address ‘00pp’ where pp is the sub-address assigned to the 2
PSAM

Message Type ‘FF’ 1
ID7HReAD Thread Identifier of the request 1
LpaTa ‘0004’ 2
ASW1 ASW2 ‘0000’ 2
RC ‘0000’ 2

10.3.6 Get Next

The Get Next command is issued by the PSAM Handler, after
receiving a response from the PSAM with SW1SW2 = ‘9601’, in
order to get the next incremental response from the PSAM.

10.3.6.1 The Get Next command must conform to the
format defined in Table 116.
10.3.6.2 The Get Next response must conform to the

Copyright © 2013 Nets Denmark A/S

All rights reserved.

120

October 2013

TAPA Application Architecture Version 3.0

format defined in Table 117.

121

Note: The Get Next command APDU is created directly by the
PSAM Handler, and is never transmitted between handlers in
the Terminal Message format.

Table 116: Get Next command

Field Value Length
(bytes)
CLA ‘B0’ 1
INS ‘FC’ 1
P1 IDTHREAD 1
P2 ‘00’ 1
Le ‘00’ 1

Table 117: Response to Get Next command

Field Value Length
(bytes)
Response Data Next increment of Response data var.
SW1SwW2 9000’ or '9601’ 2
(‘9000 indicates that this is the last increment of
data to be given to the PSAM Handler)
SW1SW2 '6F01’ 2
Syntax error in command. Resend Command.
SW1SW2 '6F02’ 2

Abort chaining.

10.3.7 Response Command

The PSAM Handler issues the Response command in order to
send response data from another terminal device to the
PSAM.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 122

TAPA Application Architecture Version 3.0

10.3.7.1 The Response command must conform to the
format defined in Table 118.

10.3.7.2 If the P2 in the command is ‘01’, the PSAM must
respond with an R-APDU consisting of only an
SW1SW2 ="90 00’. The PSAM Handler will then
send another response command containing
additional data to be concatenated to the data
already received.

When two or more response commands are
“chained” as indicated by P2 = ‘01’, the PSAM
must concatenate the data portion from each
command, left to right, until the final command
with P2 = ‘00’ is received. When all data have
been received, the PSAM may then proceed
with processing.

Note: The Response Command APDU is created directly by the
PSAM Handler, and is never transmitted between handlers in
the Terminal Message format.

Table 118: Response command

Field Value Length

(bytes)
CLA ‘B0’ 1
INS ‘FE’ 1
P1 IDireaD 1
P2 ‘00’ or ‘01’ 1
L. Length of the response data 1

Response Data Response data from other device variable
e ‘00’ 1

10.3.8 Synchronize PSAM - PIN Pad/Secure Cryptograhic Device

The Synchronize PSAM/PIN Pad command is specific to the PIN
Pad/Secure Cryptographic Device processing described in
section 13.3, and is only used if the PSAM provides the

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

application control. PSAM applications that do not support the
PIN Pad/Secure Cryptographic Device Processing, or do not
provide application control, do not need to support this
command.

10.3.8.1 The Synchronize PSAM/PIN Pad command must
conform to the format defined in Table 119.

Table 119: Synchronize PSAM/PIN Pad command

Field Value Length
(bytes)
Destination Address ‘00pp’ where pp is the sub-address assigned to the 2
PSAM
Source Address ‘0100’ for the MAD-Handler 2
Message Type ‘42’ 1
ID7hreAD Thread Identifier assigned by the MAD-Handler 1
LoaTa ‘0006" + L, 2
CLA 'BO' 1
INS 'c2' 1
P1P2 IDpsamare 2
L ‘01 1
IDtHreAD Thread Identifier 1
Le '00’ 1
10.3.8.2 The Synchronize PSAM/PIN Pad response must
conform to the format defined in Table 120.
10.3.8.3 The PSAM must return the appropriate

Response Code if the Synchronize PSAM/PIN
Pad command has not been processed
correctly.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

123

October 2013 124

TAPA Application Architecture Version 3.0

Table 120: Response to Synchronize PSAM/PIN Pad command

Field Value Length
(bytes)
Destination Address The PSAM Handler will insert the address of the 2

source of the command.

Source Address ‘O0pp’ where pp is the sub-address assigned to the 2
PSAM

Message Type ‘FF 1

ID1HreAD Thread Identifier of the request 1

Lpata ‘000C' 2

PIN Pad Identifier

IDppcreaToR Unique Id of PIN Pad Creator 4
IDpp Unique Id of PIN Pad/secure Device 4
ASW1 ASW?2 ‘0000’ 2
RC ‘0000’ 2

Table 121: ASW1-ASW2 Response Codes to Synchronize PSAM/PIN Pad command

ASW1-ASW2 Description
‘0203’ PIN Pad/Secure Cryptographic Device is unresponsive
‘0204’ PIN Pad/Secure Cryptographic Device unable to synchronize

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 125

TAPA Application Architecture Version 3.0

11. The Data Store Handler

The Data Store Handler is responsible for managing the non-
volatile memory of the terminal.

11.1 General requirements

The Data Store Handler only recognizes the common Handler
commands: Open Handler and Close Handler.

11.2 Messages sent to the Data Store Handler

This section provides a list of additional commands that should
be accepted and processed by the Data Store Handler.

11.2.1 File Management

11.2.1.1 The Data Store Handler must provide file
management services as requested by other
terminal components (typically MAD-Handler
and PSAM applications). Terminal components
must be able to request the storage of both
keyed and non-keyed records grouped into
files.

For the purposes of this section, a “record” is
defined to consist of a string of “key data”
(which may have length zero) and a string of
“record data”.

11.2.1.2 If a keyed file is created, then each record
stored in that file must have a unique key.

11.2.1.3 If a service is requested, it is fulfilled either
entirely or not at all.

11.2.2 Create File

The Create File command is used to create one or more files
within the terminal Data Store.

11.2.2.1 The Create File command must conform to the
format defined in Table 122.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 122: Create File command

Field Value Length

Destination Address '0500" 2

Source Address Any 2

Message Type ‘90’ 1

ID1HREAD Thread Identifier assigned by the MAD-Handler 1

Loata '0004' 2

NUMg e Number of files of this type that should be created 1

LENgyey Maximum length of search key to associate with 1

record. (‘00" if no search key is used).
LENgec Maximum length of a record 2
11.2.2.2 The Create File response must conform to the
format defined in Table 123.
11.2.2.3 If there is insufficient memory to successfully
process the Create File command, the Data
Store Handler must return a Response Code
indicating “Insufficient resources”.
Table 123: Response to Create File command

Field Value Length

Destination Address Any 2

Source Address '0500" 2

Message Type 'FF' 1

ID1HReAD Thread Identifier of the request 1

Loata 242*NUM gy 2

File Identifiers N file identifiers of the created files 2 *NUM e

Response Code Response Code 2

11.2.2.4

Copyright © 2013 Nets Denmark A/S
All rights reserved.

The Response Codes applicable to the Create

126

October 2013

TAPA Application Architecture Version 3.0

File command are defined in Table 124.

Table 124: Response Codes to Create File command

Response Code Description

'FF51' Invalid File ID

‘FF52’ Record too large

'FF54' File creation error.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.3 Delete File

The Delete File command is used to delete one or more files
within the terminal Data Store. File deletion may be necessary
to recover the memory they occupy and release the File Ids
associated with them.

11.23.1

The Delete File command must conform to the
format defined in Table 125.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

127

October 2013

TAPA Application Architecture Version 3.0

Table 125: Delete File command

Field Value Length
Destination Address '0500' 2
Source Address Any 2
Message Type ‘91’ 1
ID7HReAD Thread Identifier assigned by the MAD- 1
Handler

Lpata 2*NUM g6 2
File Identifiers N file identifiers of the files to be deleted 2 *NUM e

11.2.3.2 The Delete File response must conform to the

format defined in Table 126.
Table 126: Response to Delete File command

Field Value Length
Destination Address Any 2
Source Address '0500' 2
Message Type 'FF' 1
ID7HReAD Thread Identifier of the request 1
Lpata '0002" 2
Response Code Response Code 2

11.2.3.3 The Response Codes applicable to the Delete

File command are defined in Table 127.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

128

October 2013

TAPA Application Architecture Version 3.0

Table 127: Response Codes to Delete File command

Response Code Description

'FF51' Invalid File ID

'FF55' File could not be accessed.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.4 Add File Record

The Add File Record command is used to add a record to an
existing file within the terminal Data Store. Adding a record to
a file means making an entry of the maximum file record + key
size available.

11.24.1

11.2.4.2

11.2.4.3

The Add File Record command must conform to
the format defined in Table 128.

The Data Store Handler must not reformat the
file record data supplied in the DATA field.

If LENgec = ‘0000, the Data Store must reserve
space for the maximum record size. However,
the actual record length must be assigned as
‘0000’ until a subsequent Update is received
with a defined size record.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

129

October 2013

TAPA Application Architecture Version 3.0

Table 128: Add File Record command

Field Value Length
Destination Address ‘0500’ 2
Source Address Any 2
Message Type ‘92’ 1
ID1HREAD Thread ldentifier assigned by the MAD-Handler 1
Loata ‘0005’ + LENgygy + LENggc 2
IDgie File to which the record must be added 2
LENgyey Length of search key to associate with record. (‘00 1
if no search key is used, or if no data are present).

Key Data Search Key data LENgey
LENgec Length of a record (may be '0000') 2
Record Data Record data LENRgec

11.2.4.4

11.2.4.5

11.2.4.6

The Add File Record response must conform to

the format defined in Table 129.

requested.

If the Data Store Handler returns the Response
Code of “successful operation”, the entire
record must have been added to the file as

If there is insufficient memory to successfully
process the Add File Record command, the Data
Store Handler must return a Response Code

indicating “Insufficient resources”.

Table 129: Response to Add File Record command

Field Value Length
Destination Address Any 2
Source Address '0500' 2
Message Type 'FF' 1

Copyright © 2013 Nets Denmark A/S

All rights reserved.

130

October 2013

TAPA Application Architecture Version 3.0

Field Value Length
ID1hreAD Thread Identifier of the request 1
LoaTa '0004' 2
Record Pointer Pointer to record within File 2
Response Code Response Code 2
11.2.4.7 The Response Codes applicable to the Add File

Record command are defined in Table 130.

Note: the Data Store Handler may reject the Add File Record
command for a keyed file if the search key already exists. It is
up to the application adding the record to ensure unigueness
of the search key.

Table 130: Response Codes to Add File Record command

Response Code Description

'FF51' Invalid File ID

'FF52' Record too large

'FF53' Search key too large

'FF55' File could not be accessed.

'FF57' File read error.

'FF58' File write error.

‘FF59’ Search key already existing

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

131

October 2013

TAPA Application Architecture Version 3.0

Response Code

Description

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.
‘FFFB’ Unsupported operation: the Handler has received a command or

an associated data set that was unrecognized or unsupported.

11.2.5 Get File Record

The Get File Record command is used to retrieve data based
on the record pointer within a given file. This function is non-
destructive. Note that '0000' is an invalid record pointer,
which may be returned when there is no next or previous
record. In the context of this command, the previous record is
the record that was last added to the file before the current
record and the next record is the record that was added after

the current record was added.

11.2.5.1

the format defined in Table 131.

Table 131: Get File Record command

The Get File Record command must conform to

Field Value Length
Destination Address '0500' 2
Source Address Any 2
Message Type ‘93’ 1
ID1HREAD Thread Identifier assigned by the MAD-Handler 1
Loata ‘0005’ 2
IDgie File from which the record must be retrieved 2
Record Pointer Pointer to record to get. 2

Not used (and should be ‘0000’) when the Pointer

Orientation is either ‘02’ or ‘03’.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

132

October 2013

TAPA Application Architecture Version 3.0

Field

Value

Length

Pointer Orientation

'00": Get the record, which was pointed to by the
Record Pointer field. When the record has been
returned, the record pointer must be set to the
next record (allows FIFO processing).

'01": Get the record, which was pointed to by the
Record Pointer field. When the record has been
returned, the record pointer must be set to the
previous record (allows LIFO processing).

'02': Get the first record in the file. When the
record has been returned, the record pointer must
be set to the next record (allows FIFO processing).

'03": Get the last record in the file. When the
record has been returned, the record pointer must
be set to the next to last record (allows LIFO
processing).

11.2.5.2

The Get File Record response must conform to

the format defined in Table 132.

Table 132: Response to Get File Record command

Field Value Length
Destination Address Any 2
Source Address '0500' 2
Message Type 'FF' 1
ID1HReAD Thread Identifier of the request 1
Loata LENsyey + LENgec + ‘0007’ 2
LENgyey Length of search key associated with the retrieved 1
record. (‘00" if no search key is used).

Key Data Search key data LENgey
LENRec Length of the record 2
Record Data Retrieved record data LENRec
Record Pointer Pointer to next/previous record position within file 2
Response Code Response Code 2

Copyright © 2013 Nets Denmark A/S

All rights reserved.

133

October 2013

134

TAPA Application Architecture Version 3.0

11.2.5.3 The Response Codes applicable to the Get File
Record command are defined in Table 133.

Table 133: Response Codes to Get File Record command

Response Code Description

'FF50' Invalid record pointer. Record pointer outside the range defined
for the current structure (Has not been added yet).

'FF51' Invalid File ID

'FF55' File could not be accessed

'FF56' File seek error. A selected record (key) could not be found.

'FF57' File read error

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.6 Update File Record

The Update File Record command is used to update an existing
record with an amount of data that must not exceed the
maximum indicated at file creation. The Update File Record
command is destructive in that the previous content of the
record is erased.

11.2.6.1 The Update File Record command must
conform to the format defined in Table 134.

Note: The record to be updated must have been
previously retrieved using either the Get File

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

record, and not to locate it.

Record command or the Find and Get File
Record command. The Update Record command
must specify the record pointer of the record to
be updated. The data included in the Key Data
field is used solely to update the indicated

135

Table 134: Update File Record command

Field Value Length
Destination Address '0500' 2
Source Address Any 2
Message Type ‘94’ 1
ID1HReAD Thread Identifier assigned by the MAD-Handler 1
Loata ‘0007’ + LENgygy + LENgec 1
IDgie File in which the record must be updated 2
Record Pointer Pointer to record to update 2
The first record in a file may be addressed using
‘0000’.
LENgyey Length of search key to associate with record. 1
(‘00" if no search key is used).
Key Data Search Key data LENsey
LENRec Length of a record 2
Record Data New record data LENRec

11.2.6.2

11.2.6.3

11.2.6.4

The Update File Record response must conform

to the format defined in Table 135.

must have been updated.

modified.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

If the Data Store Handler returns the Response
Code of “successful operation”, the entire
record, as specified in the Update command,

If the Data Store Handler rejects the command,
the addressed record must not have been

October 2013

TAPA Application Architecture Version 3.0

Table 135: Response to Update File Record command

136

Field Value Length
Destination Address Any 2
Source Address '0500' 2
Message Type 'FF' 1
ID1HREAD Thread Identifier of the request 1
Loata ‘0004’ 2
Record Pointer Pointer to record position within File 2
Response Code Response Code 2
11.2.6.5 The Response Codes applicable to the Update

File Record command are defined in Table 136.

Table 136: Response Codes to Update File Record command

Response Code Description

'FF50' Invalid record number. Record number outside the range defined
for the current structure (Has not been added yet).

'FF51' Invalid File ID

'FF52' Record too large

'FF53' Search key too large

'FF55' File could not be accessed.

'FF57' File read error.

'FF58' File write error.

‘FF59’ Search key already existing

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 137

TAPA Application Architecture Version 3.0

Response Code Description

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and

therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.7 Find and Get File Record

The Find and Get File Record command is used to locate and
retrieve an existing record based on the associated key. This
function is non-destructive to the file record.

11.2.7.1 The Find and Get File Record command must
conform to the format defined in Table 137.

Table 137: Find and Get File Record command

Field Value Length
Destination Address ‘0500’ 2
Source Address Any 2
Message Type ‘95’ 1
ID1HReAD Thread Identifier assigned by the MAD-Handler 1
Loata ‘0003’ + LENgygy 2
IDpie File from which the record must be retrieved 2
LENgey Length of search key associated with the retrieved 1
record.
Key Data Search Key data LENgkey
11.2.7.2 The Find and Get File Record response must

conform to the format defined in Table 138.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

138
TAPA Application Architecture Version 3.0
Table 138: Response to Find and Get File Record command
Field Value Length
Destination Address Any 2
Source Address '0500' 2
Message Type 'FF' 1
ID7HReAD Thread Identifier of the request 1
LoaTa ‘0007’ + LENgygy + LENggc 2
LENsey Length of the search key associated with the 1
retrieved record. This must be the same as the
length specified when the record was Added.
Key Data Search Key data LENsey
LENRec Length of the retrieved record 2
Record Data Retrieved record data LENRec
Record Pointer Pointer to retrieved record 2
Response Code Response Code 2
11.2.7.3 The Response Codes applicable to the Find and
Get File Record command are defined in Table

139.

Table 139: Response Codes to Find and Get File Record command

Response Code Description

'FF50' Invalid record number. Record number outside the range defined
for the current structure (Has not been added yet).

'FF51' Invalid File ID

'FF53' Search key too large

'FF55' File could not be accessed.

'FF56' File seek error. A selected record (key) could not be found.
'FF57' File read error.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Response Code Description

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.8 Delete File Record

The Delete File Record command is used to delete a record
based on the record pointer for a given file. This function not
only erases the data from the record but also frees the record
space associate with it.

11.2.8.1 The Delete File Record command must conform
to the format defined in Table 140.

Table 140: Delete File Record command

Field Value Length
Destination Address '0500' 2
Source Address Any 2
Message Type ‘96’ 1
ID7hreAD Thread Identifier assigned by the MAD-Handler 1
Lpata ‘0004’ 2
IDgye File from which the record must be deleted 2

Copyright © 2013 Nets Denmark A/S
All rights reserved.

139

October 2013

TAPA Application Architecture Version 3.0

Field

Value Length

Record Pointer

Pointer to record to delete 2

The first record in a file may be addressed using
‘0000’.

11.2.8.2

to the format defined in Table 141.

Table 141: Response to Delete File Record command

The Delete File Record response must conform

Field Value Length
Destination Address Any 2
Source Address '0500' 2
Message Type 'FF' 1
ID1HReAD Thread Identifier of the request 1
Lpata '0002" 2
Response Code Response Code 2
11.2.8.3 The Response Codes applicable to the Delete

File Record command are defined in Table 142.

Table 142: Response Codes to Delete File Record command

Response Code Description

'FF50' Invalid record pointer. Record pointer outside the range defined
for the current structure (Has not been added yet).

'FF51' Invalid File ID

'FF55' File could not be accessed.

'FF57' File read error.

'FF58' File write error.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

140

October 2013

TAPA Application Architecture Version 3.0

Response Code Description

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.9 Find and Delete File Record

The Find and Delete File Record command is used to locate
and erase a record based on the search key from a given file.
This function not only erases the data from the record but also
frees the actual record space associated with it.

11.2.9.1 The Find and Delete File Record command must
conform to the format defined in Table 143.

Table 143: Find and Delete File Record command

Field Value Length
Destination Address '0500' 2
Source Address Any 2
Message Type ‘97’ 1
ID1HREAD Thread Identifier assigned by the MAD-Handler 1
Loata ‘0003 + LENgygy 2
IDpie File from which the record must be deleted 2
LENgyey Length of search key associated with the record to 1
delete.
Key Data Search Key data LENgey
11.2.9.2 The Find and Delete File Record response must

Copyright © 2013 Nets Denmark A/S
All rights reserved.

141

October 2013

TAPA Application Architecture Version 3.0

conform to the format defined in Table 144.

Table 144: Response to Find and Delete File Record command

Field Value Length
Destination Address Any 2
Source Address '0500' 2
Message Type 'FF' 1
ID7HReAD Thread Identifier of the request 1
Loata ‘0002’ 2
Response Code Response Code 2
11.2.9.3 The Response Codes applicable to the Find and

Delete File Record command are defined in

Table 145.

Table 145: Response Codes to Find and Delete File Record command

Response Code Description

'FF50' Invalid record pointer. Record pointer outside the range defined
for the current structure (Has not been added yet).

'FF51' Invalid File ID

'FF53' Search key too large

'FF55' File could not be accessed.

'FF56' File seek error. A selected record (key) could not be found.

'FF57' File read error.

'FF58' File write error.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

Copyright © 2013 Nets Denmark A/S
All rights reserved.

142

October 2013 143

TAPA Application Architecture Version 3.0

Response Code Description

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and

therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.10 Clear File

The Clear File command is used to delete all records from a
specified file. This function not only erases the data from the
record but also frees the actual record space associated with
it. However, the cleared file remains allocated to the
previously defined File ID.

11.2.10.1 The Clear File command must conform to the
format defined in Table 146.

Table 146: Clear File command

Field Value Length
Destination Address '0500' 2
Source Address Any 2
Message Type ‘98’ 1
ID1hreAD Thread Identifier assigned by the MAD-Handler 1
Lpata '0002' 2
IDgye File from which the records must be deleted 2
11.2.10.2 The Clear File response must conform to the

format defined in Table 147.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 144

TAPA Application Architecture Version 3.0

Table 147: Response to Clear File command

Field Value Length
Destination Address Any 2
Source Address '0500' 2
Message Type 'FF' 1
ID7hReAD Thread Identifier of the request 1
Lpata ‘0002’ 2
Response Code Response Code 2

11.2.10.3 The Response Codes applicable to the Clear File
command are defined in Table 148.

Table 148: Response Codes to Clear File command

Response Code Description

'FF51' Invalid File ID

'FF55' File could not be accessed.

'FF57' File read error.

'FF58' File write error.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to

process it at this moment. The requesting Handler must try again

later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and

therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

11.3 Summary

Table 149: Data Store Handler specific commands

Destination Source Message Type | Description

Address Address

'0500' Any '90' Create File

'0500" Any ‘91’ Delete File

'0500' Any ‘92’ Add File Record

'0500' Any '93' Get File Record

'0500" Any ‘94’ Update File record
'0500" Any ‘95’ Find and Get File Record
'0500' Any ‘96’ Delete File Record
'0500" Any '97' Find and Delete File Record
'0500" Any ‘98’ Clear File

Copyright © 2013 Nets Denmark A/S
All rights reserved.

145

October 2013

TAPA Application Architecture Version 3.0

12. The Communication Handler

The Communication Handler is responsible for managing the
communication interface and providing application level
online communication services to one or more host systems.
The physical communication interface or protocol used to
interact with an online host system is not dictated by this
specification.

12.1 Messages sent to the Communication

Handler

This section provides a list of additional commands that should

be accepted and processed by the Communication Handler.

12.1.1 Initiate Communication Session

The Initiate Communication Session command is used to
establish initial communication with an online host system.
The information needed to establish this session must be
conveyed in the Session Data field. The coding of the Session
Data field is proprietary to the terminal and outside the scope
of this specification.

Following the session setup, data is exchanged using the Read
Handler String and Write Handler String commands.

12.1.1.1 The Initiate Communication command must
conform to the format defined in Table 150.
The coding of the Session Data field is
proprietary to the terminal and outside the
scope of this specification.

Table 150: Initiate Communication Session command

Field Value Length
Destination Address '0600' 2
Source Address Any 2
Message Type 'BO' 1
ID7HReAD Thread Identifier assigned by the MAD-Handler 1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

146

October 2013

TAPA Application Architecture Version 3.0

Field Value Length
LpaTa Length of Session Data 2
Session Data Data needed to initiate the communication Var.
session
12.1.1.2 The Initiate Communication Session response

must conform to the format defined in Table
151.

Table 151: Response to Initiate Communication Session command

Field Value Length
Destination Address Any 2
Source Address '0600' 2
Message Type 'FF' 1
ID1HReAD Thread Identifier of the request 1
Lpata '0002' 2
Response Code Response Code 2
12.1.1.3 The Response Codes applicable to the Initiate

Communication Session command are defined
in Table 152.

Table 152: Response Codes to Initiate Communication Session command

Response Code

Description

'FF60" Invalid session setup parameters.

'FF62' Connection in progress

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to

process it at this moment. The requesting Handler must try again
later

Copyright © 2013 Nets Denmark A/S
All rights reserved.

147

October 2013 148

TAPA Application Architecture Version 3.0

Response Code Description

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and

therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

12.1.2 Terminate Communication Session

The Terminate Communication Session command is used to
discontinue a communication session with a host system.

12.1.2.1 The Terminate Communication Session
command must conform to the format defined
in Table 153.

Table 153: Terminate Communication Session command

Field Value Length

Destination Address '0600' 2

Source Address Any 2

Message Type '‘B1' 1

ID1HReAD Thread Identifier assigned by the MAD-Handler 1

Loata '0000' 2

12.1.2.2 The Terminate Communication Session

response must conform to the format defined
in Table 154.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 149

TAPA Application Architecture Version 3.0

Table 154: Response to Terminate Communication Session command

Field Value Length
Destination Address Any 2
Source Address '0600' 2
Message Type 'FF' 1
ID1HREAD Thread Identifier of the request 1
Loata '0002' 2
Response Code Response Code 2
12.1.2.3 The Response Codes applicable to the

Terminate Communication Session command
are defined in Table 155.

Table 155: Response Codes to Terminate Communication Session command

Response Code Description

'FF61' No connection

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to

process it at this moment. The requesting Handler must try again

later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and

therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

12.2 Summary

Table 156: Communication Handler-Specific commands

Destination Source Message Type Description

Address Address

'0600" Any '60' Initiate communication
'0600" Any ‘61’ Terminate Session

Copyright © 2013 Nets Denmark A/S
All rights reserved.

150

October 2013 151

TAPA Application Architecture Version 3.0

13. Event Handler

The Event Handler provides a mechanism for external events
to be posted to the controlling application processes. Devices
may post events to the Event queue by sending an Add Event
Message to the Event Handler. Application processing code
(either in the MAD-Handler or in the PSAM) may send
messages to the Event Handler in order to retrieve events
from the queue.

13.1 Event Types

The event type codes are defined in Table 157, with the
addresses of the handlers where the events may have
occurred.

Table 157: Event Types

Event Type Code Event Description Event Location
‘01 Chip Card Inserted Processor Card ‘0202’
Reader
Memory Card ‘0203’
Reader

Contactless Card ‘0204’

Reader
PSAM Handler ‘00pp’
‘02’ Magnetic Stripe Card Swiped Magnetic Stripe ‘0201’
Reader
‘03’ Key Pressed Customer Key Pad | ‘0303’

Merchant Key Pad | ‘0401’

‘04’ Incoming Call Communication ‘0600’
Handler
‘05’-7F Reserved for Future Use
‘80°-FF Reserved for Proprietary Use

13.2 Event Handler Messages

The Event Handler must be able to process the commands
defined in this section.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

13.2.1 Add Event

The Add Event message is used to post an event to the end of
the event queue.

13.2.1.1

13.2.1.2

13.2.1.3

An Add Event command must conform to the
format defined in Table 158.

The Add Event message may originate from a
device handler that is not able to assign a valid
Thread Identifier. To ensure that there is no
collision with on-going threads being managed
by the MAD-Handler, the Event Handler must

not send a response to the Add Event message.

The Add Event message is not a “command”
requesting an action, and therefore does not
transfer control. It is the logical equivalent of
writing a message directly to the Event Queue.

The Event Handler must retain the Event Type
Code and Event Location in the Event Queue.

Table 158: Add Event Command

Field Value Length
Destination Address ‘0700’ 2
Source Address Any 2
Message Type 'co' 1
IDrHRrean Any 1
Loata ‘0003’ 2
Event Type Code Type of Event 1
Event Location Address of Event location 2

13.2.2 Get Event

The Get Event message is used to remove the oldest event
from the event queue.

13.2.2.1

A Get Event command must conform to the

Copyright © 2013 Nets Denmark A/S
All rights reserved.

152

October 2013

TAPA Application Architecture Version 3.0

format defined in Table 159.

Table 159: Get Event Command

Field Value Length
Destination Address ‘0700’ 2
Source Address Any 2
Message Type 'c1' 1
ID1HREAD Thread Identifier assigned by the MAD-Handler 1
Loata ‘0000’ 2
13.2.2.2 A Get Event response must conform to the
format defined in Table 160.
13.2.2.3 The Event Handler must return the Response
Code of “successful operation” if the Handler
was able to successfully retrieve the oldest
event from the event queue. The event must be
removed from the queue as a result of a
successful retrieval.
13.2.2.4 The Event Handler must return the appropriate
Response Code if it is unable to retrieve an
event from the event queue. The event must
not be removed from the queue if the retrieval
was unsuccessful.
Table 160: Response to Get Event command
Field Value Length
Destination Address Any 2
Source Address ‘0700 2
Message Type 'FF' 1
ID1hreAD Thread Identifier of the request 1
LDATA '0005' 2
Event Type Code Type of Event 1

Copyright © 2013 Nets Denmark A/S

All rights reserved.

153

October 2013

154
TAPA Application Architecture Version 3.0
Field Value Length
Event Location Address of Event location 2
Response Code Response Code 2
13.2.2.5 The Response Codes applicable to the Get Event

command are defined in Table 161.

Table 161: Response Codes to Get Event command

Response Code Description

‘FF72’ No Events in Queue

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

13.2.3 Find Event

The Find Event message is used to find the first (or oldest)
message of a particular type, or for a particular location, and
remove it from the event queue.

13.2.3.1 A Find Event command must conform to the
format defined in Table 162.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0
Table 162: Find Event Command
Field Value Length
Destination Address ‘0700’ 2
Source Address Any 2
Message Type 'c2' 1
ID1HREAD Thread Identifier assigned by the MAD-Handler 1
Loata ‘0004’ 2
Search Type See Table 179 1
Event Type Code Event Type to find 1
Event Location Event location to find 2
13.2.3.2 A Find Event response must conform to the
format defined in Table 163.
13.2.3.3 The Event Handler must return the Response
Code of “successful operation” if the Handler
was able to successfully find and retrieve an
event from the queue. The event must be
removed from the queue as a result of a
successful retrieval.
13.2.34 The Event Handler must return the appropriate

Response Code if it is unable to find or retrieve
an event from the event queue. No event must
be removed from the queue if the retrieval was
unsuccessful.

Table 163: Response to Find Event command

Field Value Length
Destination Address Any 2
Source Address '0700' 2
Message Type 'FF' 1
ID1hreAD Thread Identifier of the request 1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

155

October 2013

TAPA Application Architecture Version 3.0

Field Value Length

LoaTa ‘0005’ 2

Event Type Code 1

Event Location 2

Response Code Response Code 2
13.2.3.5 The Response Codes applicable to the Find

Event command are defined in Table 164.

Table 164: Response Codes to Find Event command

Response Code Description

‘FF72 No Events in Queue

‘FF73’ No Matching Events in Queue

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

13.2.4 Flush Event Queue

13.24.1

The Flush Event Queue is used remove all outstanding events
from the event queue.

to the format defined in Table 165.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

A Flush Event Queue command must conform

156

October 2013

TAPA Application Architecture Version 3.0
Table 165: Flush Event Queue Command
Field Value Length
Destination Address ‘0700’ 2
Source Address Any 2
Message Type 'c3' 1
ID1HREAD Thread Identifier assigned by the MAD-Handler 1
Loata ‘0000’ 2
13.2.4.2 A Flush Event Queue response must conform to
the format defined Table 166.
13.2.4.3 The Event Handler must return the Response
Code of “successful operation” if the Handler
was able to successfully flush all events from
the queue.
13.2.4.4 The Event Handler must return the appropriate
Response Code if it is unable to empty the
event queue. No event must be removed from
the queue if the flush was unsuccessful.
Table 166: Response to Flush Event Queue command
Field Value Length
Destination Address Any 2
Source Address '0700' 2
Message Type 'FF' 1
ID1hreAD Thread Identifier of the request 1
LpaTa ‘0002’ 2
Response Code Response Code 2
13.2.4.5 The Response Codes applicable to the Flush
Event Queue command are defined in Table
167.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

157

October 2013

TAPA Application Architecture Version 3.0

Table 167: Response Codes to Flush Event Queue command

Response Code

Description

13.3

‘FF72’ No Events in Queue

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

Summary
Table 168: Event Handler-Specific commands

Destination Source Message Type Description

Address Address

'0700" Any 'co' Add Event

'0700" Any ‘cr Get Event

‘0700’ Any ‘c2’ Find Event

‘0700’ Any ‘c3’ Flush Event Queue

Copyright © 2013 Nets Denmark A/S
All rights reserved.

158

October 2013 159

TAPA Application Architecture Version 3.0

14. Secure Cryptographic Device
Processing

14.1 Overview

A terminal may support one or more Secure Cryptographic
Devices. The Card Reader may be integrated with the PIN Pad
or be an independent Secure Cryptographic Device. Terminals
not supporting a PIN Pad may support another Secure
Cryptographic Device, e.g. in a Secure Card Reader.

A Secure Cryptographic Device may utilize the same PKC
encryption scheme as a PIN Pad or for Secure Cryptographic
Devices not supporting PKC use a proprietary key management
scheme.

14.2 PIN Pad processing

In order to support applications that require use of PINs, this
specification defines a method of establishing and using a
secure zone between a PSAM application and the PIN
Pad/Secure Cryptographic Device. This facility provides the
following features:

e The acquirer’s online PIN Encryption keys are maintained
in the PSAM, rather than the PIN Pads.

e Application-specific logic for PIN verification is maintained
in the PSAM rather than the PIN Pad.

e Multiple acquirers, responsible for different applications,
may securely use the same PIN pad.

14.2.1 Physical Environment

14.2.1.1 The PIN Pad, with its keypad, must be contained
within a Secure Cryptographic Device (SCD). The
SCD may as well contain the Card Reader. The
SCD must also contain User Interface Display.
Each of these devices is addressed as specified
in Table 2.

14.2.1.2 The Card Reader shall if it is a stand-alone unit,
be a Secure Cryptographic Device by itself. The
Card Reader must transfer sensitive information
to other devices in a secure way.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 160

TAPA Application Architecture Version 3.0

14.2.2 Establishing the Secure Zone

To transmit enciphered PINs between the PIN Pad and a PSAM
application, a secure zone must first be established between
the two entities. This is done using public key cryptography to
establish an initial symmetric PIN Session master key.
Subsequently, symmetric key cryptography (triple-DES) is used
for PIN encryption and message authentication between the
entities.

The PIN Pad and the PSAM each contain their own unique
asymmetric key pairs (SKpp, PKpp) and (SKpsam, PKpsam). The
public keys are certified by the PIN Pad Creator and by the
Acquirer’s agent, known as the PSAM Creator, respectively.
(For the remainder of this section, this entity will be referred
to as the Acquirer. If the PSAM’s are created by multiple
systems on behalf of the Acquirer, each system must have its
own unique PSAM Creator Identifier and must have a different
set of public keys.)

The required key hierarchy for the PIN Pad and the PSAM
application is illustrated in Figure 11. At the top of this key
hierarchy is a Certification Authority (CA), which is managed by
the Acquirer.

For the PSAM application, the CA creates an Acquirer
certificate on the Acquirer public key, and the Acquirer in turn
creates a PSAM certificate on the PSAM public key.

Similarly, for PIN Pads, the CA creates a PIN PAD Creator
certificate, and the PIN Pad Creator creates a PIN Pad
certificate.

The required keys and certificates are inserted into the PIN
Pad and PSAM during their personalization processes.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

161

Private Key
SKea pe

I Certificate Autharity
Private Key Public Key Public Key
5Kea, ppam PRes pram PRy ep
Acquirer
Private Key Public Key
“A.cq PLAM an.w,vsw
[certified
Privata Key Public Key REINE L
oK P, with SKo, soun =
o — PKCarq, psss
PHypas certified
with 5Kpq e =
PKC paps
PSAM

PIN Pad,/50 Creator

PFublic Key
PE g

¥

Py certified
with 5K, o=
PR

Private Key

Private Key
HKop

SKppe
Public Key
Pkap

PE,, certified
with 5Kpp =
PR

PIN PAD/SD

Figure 11: PIN Pad and PSAM Key Hierarchy

14.2.3 Supported Configurations

The PIN processing supports a variety of POS configurations as

illustrated in Figure 12.

e Environment 1 illustrates a one-to-one relationship
between the PSAM and the PIN Pad, as may be found in a

stand-alone POS environment.

e Environment 2 illustrates multiple PIN Pads associated
with a single PSAM, as might be the case in a distributed

multi-lane stored environment.

e Environment 3 illustrates multiple PSAMs, owned by the
same Acquirer, which are associated with one or more PIN
Pads. This might be required in a multi-lane environment
where an Acquirer uses more than one PSAM for backup

and/or load balancing.

e Environment 4 illustrates an environment with multiple
PSAMs, which are owned by different Acquirers,
associated with one or more PIN Pads. Note that this
environment introduces some special security issues,
which are further discussed in Section 14.6.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Terminal

Terminal

Terminal

Terminal

Terminal

PIN Pad/SD, Display &
Card Reader

PIN Pad/50, Display &

Card Reader

PIM Pad/5D, Display &

Card Reader

PIM Pad/50, Display &
Card Reader

PIM Pad/sD, Display &
Card Reader

Acquirer &

Enviranment 1

Acquirer &

Environment 2

Acquirer A

Acquirer Al | Acquirer B

Enviranment 3

Environment 4

Figure 12: PIN Pad/PSAM Environments

14.2.4 Implementation

The PIN Processing defined in these specifications is
implemented within a TAPA application. Certain specific
functions must be securely performed within the PSAM itself.
For all other functions, the choice of whether the function is
performed within the PSAM or the MAD-Handler part of the
application is up to the application designer.

The functions that must be performed within the PSAM are
specified in section 14.6.3.

14.3 PIN Pad/PSAM Initialization

During PSAM initialization, each PSAM application that uses
PIN Processing must be synchronized with the PIN Pad(s). In
order to perform synchronization, the application engages in a
dialogue with the PIN Pad in order to establish a secure zone
using a shared symmetric key.

14.3.1.1 The application must begin the synchronization
process by sending the Get Key Check Value
command to the PIN Pad. The response
identifies the PIN Pad, and provides information
about its current keys, including a check value
(KCVpn) of the current Transaction Session Key
(KSES). This check value must be compared to
the key check value of the PSAM’s current PIN
Session master key (KCVpsam). If the check
values are the same, then the two entities are
currently synchronized and no further dialogue
is necessary.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

162

October 2013

TAPA Application Architecture Version 3.0

14.3.1.2

143.1.3

The application must send the Get PIN Pad
Public Key Record commands to the PIN Pad to
retrieve the PIN Pad certificates. These
certificates must be verified by the PSAM, and
the PIN Pad’s public key recovered from them.

The application must send PSAM certificates to
the PIN Pad, using the Verify PSAM Public Key
Certificate command. The PIN Pad must verify
the PSAM’s certificates and recover the PSAM’s
public key.

163

Note: The required processing for verifying the certificates and
recovering the public keys is defined in section 14.7.

14.3.1.4

The PSAM must generate an Initial Session Key,
which must be sent to the PIN Pad by the
application using the Submit Initial Key
command. The Submit Initial Key command
contains a public-key signature (PS), which must
be generated by the PSAM. The PIN Pad must
verify the PS and recover from it the Initial
Session Key.

14.7.

Note: The required processing for generating and verifying the
PS and recovering the Initial Session Key is defined in section

14.3.1.5

If the application control is implemented in the
PSAM, the MAD-Handler application must
initiate the synchronization process by sending
a Synchronize PIN Pad command to the PSAM
application for each PIN Pad with which the
PSAM must have a relationship. This command
is defined in section 10.3.

Figure 13 illustrates the message flow for the case where the
application control is implemented within the PSAM.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

164

I . I
g Synchronise PSAM-PED/SD Gk ey Chistk Vahis
|D . GK H:"F‘F"' Kcum’éﬂ"
= - iy W T W TR R i — A A
Continues only If KCvs ! Get PIN Pad Public Key J
dare not [aentica
Record
...... AT N— ‘i
|
Get PIN Pad Public Key
_ Record
_______ 5 e P ———
I
|
Verify PSAM Public Key i
Certificate [PKCycq poasl
QOK/NOK
ST Rejected oo oee = i
Verify PSAM Public Key |
Certificate (PKCpgp)
OE/NOK
Submit Initial Key
OK/NOK, KCV
I
|
| I |

Figure 13: PSAM/PIN Pad Initialization

14.4 PIN Processing

14.4.1 Secure Cryptographic Device State

In a device with a PIN Pad, there are special security
requirements that apply to the Secure Cryptographic Device
(SCD). These requirements ensure that PINs are never
revealed outside of the secure environment.

144.1.1 The SCD must have two possible states: Default
State and PIN Entry State.

14.4.1.2 The SCD must be in Default State after terminal
initialization.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

165

14.4.1.3

14.4.1.4

14.4.1.5

14.4.1.6

The SCD must be put into PIN Entry State after
the PIN Pad has received and authenticated a
valid Initiate PIN Entry command. The SCD must
not transition to PIN Entry State under any
other circumstances.

The SCD must be returned to Default State
when the PIN Pad receives a Terminate PIN
Entry command. This command is not
authenticated, and is not signed by the PSAM.

When the SCD is in Default State:

e The numeric keys on the PIN Pad must be
disabled.

e No authentication is required on messages
that send text to the User Display. Any
application may freely send display
messages to the User Interface Handler
display.

e The Processor Card Reader must only accept
plaintext Card commands sent using the ICC
Command message. The Verify Offline PIN
Command message must not be accepted.

When the SCD is in PIN Entry State:

e The numeric keys are enabled on the PIN
Pad.

e The User Interface Handler must only accept
“authorized” messages, which cause text to
be displayed. An authorized message
includes messages that contain a MAC
generated by the PSAM, which sent the
Initiate PIN Entry. Alternatively, it may be a
command that supplies a numbered
message that has been personalized into
the SCD as valid.

e The Processor Card Reader may accept
encrypted Card commands sent using the
Verify Offline PIN Command message.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013 166

TAPA Application Architecture Version 3.0

14.4.2 PIN Entry

14.42.1 The application must begin the process of PIN
entry by sending The Initiate PIN Entry
command to the PIN Pad. The PSAM must
generate a new set of PIN Session Keys, and use
the PIN MAC Session key (KSESwmac) to sign the
command.

This Initiate PIN Entry command is a “macro”
command, which causes the PIN Pad to perform
the following functions:

e The PIN Pad generates a new set of PIN
session keys.

e The MAC on the command is validated using
the new PIN session MAC key (KSESwmac).

e The Secure Cryptographic Device is placed
into PIN Entry State.

e The cardholder is prompted to enter a PIN
by, for example, sending a Display Message
with Message code ‘09’ to the User
Interface Display.

e The PIN Pad may then respond to the
Initiate PIN Entry command. (Depending on
the implementation, the response may be
sent before the consumer has finished
performing the PIN entry.)

14.4.2.2 The application must send an authenticated Get
PIN command to the PIN Pad in order to
retrieve the PIN block. The PIN Pad will respond
with the PIN Block encrypted under the current
PIN Encryption Session Key (KSESpy). The PSAM
must validate the MAC in the response, and
decrypt the PIN Block.

14.4.2.3 During PIN entry, a symbol (for example, an
asterisk character “*”) must be displayed at the
user display instead of the PIN digit.

14.4.2.4 Error handling procedures, e.g. deletion of
incorrect entered PIN digits, must be handled
internally by the Secure Cryptographic Device.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 167

TAPA Application Architecture Version 3.0

In some environments, the application may send additional
commands to the User Interface Handler while PIN Entry is in
progress. As noted previously, any commands that require text
to be displayed must be “authorized”.

In particular, the application may send a Confirm Amount
message during this period. This command must be
authenticated while in PIN Entry State.

The particular means of handling a Confirm Amount received
during PIN Entry is environment specific. One possible
implementation is to display the amount confirmation request
along with the PIN entry request. In this case a single key press
from the consumer will serve both as the amount confirmation
and as the PIN entry.

The following three diagrams (Figure 14, Figure 15 and

t
Display Message i,
T »
, -
|
| PIN:
| Enter PIN

Display Message 1

PIN; ***
Enter PIN and Accept?

! Initiate PIN Entry

—

1 Get PIN

Example of display guidance

F 3

[PIN]gsespin

Secure Device

I

I

| I
I Display

L

I

]

Terminate PIN Entry o

— .
|
I

'y
a1e3s Aug Nid

essage

=

i

»n

Wait

= o o o) e s o o o

Figure 16) are examples of message flows within the Secure
Cryptographic Device, and of the user interface, during PIN

Entry. These sample diagrams illustrate the case where the

application control is within the PSAM.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Initiate PIN Ent L § ¥ c 2
nitiate ntry 1 Display Message Example of display guidance
- OK T
|
Get PIN] PIN:
I Enter PIN
Display Message
' *
: PIN: ***
[PIN]ksespin B Enter PIN and Accept?
' | Secure Device | Wait
Confirm Amount | I it
- splay Message |
: - : Purchase: xxx.xx DEM
Accept GEIE | Accept?
" oK |
I |
. 1]
Terminate PIN Entry I
- U .
: !

Copyright © 2013 Nets Denmark A/S

All rights reserved.

168

October 2013

TAPA Application Architecture Version 3.0

Initiate PIN Entry

OK

F

Confirm Amount

aK

L 4

21815 Aua Nid

——

Display Message

Example of display guidance

-

Display Message

PIN:
Enter PIN

PIN: ***
Enter PIN

u

Accept

:l Accept

[3

Get PIN

Iy

Secure Device
Display Message

Purchase: xxx.xx DEM
PIN; #==
Enter PIN and Accept?

i

[PIN]ysesoim

r

Terminate PIN Entry

‘

OK

Wait

o -- -4 --

o — e e ————— - g.—.—.—---

Figure 15: Combined PIN Entry and Amount Confirmation

Terminate PIN Entry

OK

"
ad

Wait

Initiate PIN Entry } o - Example of display guidance
. - Display Mess.
oK play . age =
v
]
Get PIN] PIN:
I] Enter PIN
.; Display Message
< o 1
g ' PlN: e
‘ [PIN]sespin ' J accept | : Enter PIN and Accept?
: Secure Device :
I I
I Display Message
L]
€ ¥
1
1
1

B S T

Figure 16: PIN Entry with no Amount Confirmation

Copyright © 2013 Nets Denmark A/S

All rights reserved.

169

October 2013 170

TAPA Application Architecture Version 3.0

14.5 PIN Verification

Depending on the requirements of the payment application,
PIN verification may be performed in one of three ways:

1. Online PIN verification, where the PIN is sent encrypted to
the acquirer for transmission to the card issuer.

2. Offline plaintext PIN verification, where the PIN is sent to
the card for verification in the clear.

3. Offline encrypted PIN verification, where the PIN sent to
the card for verification encrypted under a key known to
the card.

14.5.1 Online PIN Verification

If online PIN verification is to be performed, the
application sends the PIN to the Acquirer encrypted in
accordance with the method implemented by the
Acquirer. This might for example use a PIN Encryption key
established between the PSAM and Acquirer. The
approach taken, while it must comply with the PCl security
requirements scheme, is specific to the Acquirer and
outside the scope of this document.

14.5.1.1 The application must retrieve the PIN encrypted
under a key specified by the Acquirer. In order
to accomplish this, the PSAM must decipher the
PIN block using the PIN Encryption Session Key
(KSESpn), and then re-encipher it as specified by
the Acquirer, using a PIN Encryption key shared
between the PSAM and the acquirer.

Note that this function may be performed
regardless of the state of the SCD.

Figure 17 illustrates an example of online PIN
handling.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

171

PR

] L]
1 Secure Device 1
I I
I I

I
]
]
]
]
I
I
1
1
1

PIN Entry Mode

[PIN] o5y

Figure 17: Online PIN Verification

14.5.2 Offline PIN Verification

When offline PIN verification is to be performed, the
application sends a command containing the PIN to the card.
This command may contain a plaintext PIN, or may contain a
PIN that has been encrypted under a key known to the card.
(For example, the Verify command is used in the EMV
application. Depending on the card’s requirements, the PIN
may be encrypted under the card’s public key.)

145.2.1

14.5.2.2

The PSAM must encrypt the PIN verification
command APDU under the PIN session
encryption key. The encrypted command must
be sent to the Processor Card Reader using the
Verify Offline PIN message. This message must
be added a MAC using the PIN MAC Session Key
(KSESmac).

The message is authenticated and the
command APDU decrypted within the Secure
Cryptographic Device. The C-APDU is then
forwarded to the card.

The response to the Verify Offline PIN message
contains the card application’s response to the
PIN verification command. The response
message contains a MAC, which must be
verified by the PSAM.

Note that, as previously specified; offline PIN verification may
only be performed while the SCD is in PIN Entry State.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013 172

TAPA Application Architecture Version 3.0

14.6 Security Requirements

14.6.1 Business Entities

14.6.1.1 The Primary Acquirer is the entity responsible
for specifying, developing and maintaining the
PIN Pads and (at least) one of the PSAMs (even
if subcontracted to a third party). The Primary
Acquirer may be the Certification Authority.

14.6.1.2 The Certification Authority (CA) is responsible
for certifying the Acquirers™ PIN processing
systems (including Host systems, PSAMs and
PIN Pads).

14.6.1.3 The certification of the Acquirer public keys
must represent the approval by the CA of the
Acquirer’s PSAM and Host-based PIN
processors.

14.6.1.4 The Card Schemes for which PIN processing is
performed must approve the CA.

14.6.1.5 If a Secondary Acquirer introduces a new
application (and PSAM), which requires PIN
entering, it is the responsibility of the CA to
certify that the level of security provided by the
Secondary Acquirer is sufficient.

14.6.1.6 The Primary Acquirer may permit any number
of (certified) Secondary Acquirer PSAMs to be
installed in their terminal and thereby have
access to the PIN Pad(s).

14.6.1.7 The Primary Acquirer must know the identities
of all the PSAMs in each of their terminals.

14.6.1.8 The Primary Acquirer must know the identities
of all the PIN Pads configured with each of their
PSAMs.

14.6.1.9 The IDppcreator and IDpp must uniquely identify

the PIN Pad to the Acquirer. There is no
requirement that the PIN Pad be globally
identifiable.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

14.6.2 Physical Security Requirements

The requirements for the physical security of a payment and
PIN handing terminal are governed by the PCI SSCin ref. 11: e

“PCI PIN Transaction Security, PTS”.

Consequently, said requirements are out of scope for this

specification.

Secure Device

o

Processor Card
Reader

PIN:
Enter PIN

©eee |-
eeee |z
€eee

Figure 18: Secure Cryptographic Device

14.6.3 Logical Security Requirements

Also, the PCI SSC PTS requirements cover the logical security
requirements.

In addition to the PTS logical security requirements, a number

of requirements related to this application architecture are
defined below.

146.3.1

14.6.3.2

The terminal and/or PSAM application must
store the identities of each PSAM-PIN Pad
configured pair. This must be available to the
acquirer along with any other status
information required by the acquirer.

The PIN Pad private RSA key must remain
protected within the confines of the tamper
responsive PIN Pad. All cryptographic
operations using this key must be performed

Copyright © 2013 Nets Denmark A/S

All rights reserved.

173

October 2013 174

TAPA Application Architecture Version 3.0

within the tamper responsive PIN Pad.

14.6.3.3 The PSAM private RSA key must remain
protected within the PSAM. All cryptographic
operations using this key must be performed
within the PSAM.

14.6.3.4 The set of PIN Session keys (including the KSES
as well as the KSESpy and KSESymac, which are
derived from it), must be protected within the
Secure Cryptographic Device and PSAM. The
Initial Session Key, exchanged during
synchronization, may only appear outside of the
protected devices when encrypted as in the
Submit Initial Key command.

In order to so protect the Initial Session Key it is
necessary that the RSA and padding operations
defined in sections 7.2.4.2 and 7.2.4.4 be
performed within the protected devices.

14.6.3.5 The set of PIN Session keys must only be used in
the manner specified within this document;
they must not be used for any other purposes.

14.6.3.6 Only an authenticated Initiate PIN Entry
command may cause the Secure Cryptographic
Device to be put into PIN Entry state.

14.6.3.7 When in PIN Entry State the Display may only
show messages authenticated by the PSAM.
Authenticated messages includes generic write
string messages sent from the PSAM with a
MAC, as well as messages referenced by
“Message Codes”, which have been
personalized into the PIN Pad.

14.6.3.8 When in PIN Entry State, any commands that
require authentication must not be accepted by
the Secure Cryptographic Device, i.e. the PIN
pad if they do not contain a MAC from the
PSAM that sent the Initiate PIN Entry command.

14.6.4 Personalization Requirements

14.6.4.1 After personalization and initial
synchronization, the PIN Pad must contain the
data elements defined in Table 169.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

14.6.4.2

14.6.4.3

After personalization and configuration the
PSAM must contain the PIN related data
elements defined in Table 170.

The PIN Pad and PSAM must each be
personalized with at least one key/certificate
hierarchy chain and one CA public key.
Depending on the acquirer’s requirements for
the life span of the PIN Pad and PSAM and on
the CA’s requirements for migration to longer
key lengths, additional chains and CA public
keys may be inserted at personalization.

In the lists of data elements contained in the
PIN Pad and in the PSAM, it is assumed that:

® The PIN Pad is personalized with N, key
pairs and with M, PSAM CA public keys

® The PSAM is personalized with M; key pairs
and with N, PIN PAD CA public keys.

Note that it is possible for N1 = N2 and/or M1 =
M2.

Table 169: Data Elements contained in the PIN Pad

175

Description Data element Per PIN Per Obtained at/with:
Pad/SCD PSAM
PIN Pad identifier IDppcreaToR 1 Personalization
IDpp 1 Personalization
CA PP Key version VKPca, pp N, Personalization
PIN Pad Creator certificate | PKCppc N4 Personalization
PIN Pad Certificate PKCpp N Personalization
PIN Pads private key SKpp Ny Personalization
CA PSAM Key version VKPca, psam M, Personalization
CA PSAM public key PKca, psam M, Personalization
PSAM identifier RIDpsam 1 Submit Initial Key command

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

176

Description Data element Per PIN Per Obtained at/with:
Pad/SCD PSAM
IDpsamCREATOR 1 Submit Initial Key command
IDpsam 1 Submit Initial Key command
Initial Session Key KSESnit 1 Submit Initial Key command

Table 170: Data Elements contained in the PSAM

Description Data element Per PSAM | Per PIN | Obtained at/with:
Pad/SCD
PSAM identifier RIDpsam 1 Personalization
IDpsamcREATOR 1 Personalization
IDpsam 1 Personalization
CA PSAM Key Version VKPca, psam M, Personalization
Acquirer certificate PKCacq M, Personalization
PSAM Certificate PKCpsam My Personalization
PSAM private key SKpsam My Personalization
CA PP Key version VKPca, pp N, Personalization
CA PP public key PKca, pp N, Personalization
PIN Pad identifier IDppcreaTor 1 PIN Pad Certificate
IDpp 1 PIN Pad Certificate
Initial Session Key KSESniT 1 Randomly generated initial key

14.6.5.1

Copyright © 2013 Nets Denmark A/S
All rights reserved.

14.6.5 Minimum PSAM Requirements

The following PIN Pad processing functions

must be performed by the PSAM and not by the

application within the terminal:

e Generation of the Challengepsam presented

in the Get Key Check Value command.

October 2013

TAPA Application Architecture Version 3.0

Generation of the KCVpsapm. The KCVpsam is
used to validate the KCVpp returned in the
response to the Get Key Check Value
command, and is sent to the PIN Pad in the
Initiate PIN Entry command.

Generation of the PS signature presented in
the Submit Initial Key command.

Generation of the MAC on all authenticated
commands sent to the PIN Pad.

Verification of the MAC on all authenticated
responses received from the PIN Pad.

Decryption and encryption of the PIN.

Encryption of any commands used for PIN
verification being sent to the IC card.

14.7 Cryptographic Requirements

14.7.1 Verifying a Certificate - General Requirements

This section defines the general requirements for certificate
verification in accordance with ISO/IEC 9796-2. This
corresponds to the process defined in Annex E.2.1.3 of EMV

3.1.1.

Verification of a certificate begins with recovery of the
certificate data using the appropriate public key (either the CA
public key or the key resulting from verification of the next
higher level certificate) and its associated algorithm ALGP.

14.7.1.1

14.7.1.2

14.7.1.3

Recovery of the certificate data must be
performed using the process described in
Annex F.2.1 of EMV 3.1.1.

The recovery can only be performed if the
length of the certificate is the same as the
length of the modulus of the public key used in
the verification. If the lengths are different,
verification has failed.

After recovering the recoverable certificate
data, the header (first byte) and the trailer (last
byte) must be checked. The header must be
‘6A (if there is an associated remainder field) or
‘47’ (if there is no associated remainder field)

Copyright © 2013 Nets Denmark A/S

All rights reserved.

177

October 2013

TAPA Application Architecture Version 3.0

14.7.1.4

14.7.1.5

14.7.1.6

and the trailer must be ‘BC’. If this is not the
case then verification of the certificate has
failed.

If the public key algorithm indicator is not
recognized then verification has failed.

The hash value is a 20 byte field immediately
preceding the trailer (last byte) of the
recovered certificate data and must be verified
according to the following procedure:

The following data must be concatenated in
order (left to right):

1. All data beginning with the format code in
the recovered certificate data (which is
always the second byte of the recovered
certificate data) up to and including the last
byte before the hash value, in the order in
which it appears in the recovered certificate
data.

2. The Public Key Remainder (PKR), if it
exists.

The hash algorithm indicated in the certificate
(SHA-1 is the only hash algorithm supported)
must be applied to the concatenation,
producing a 20-byte result. This result is
compared to the hash value recovered from the
certificate. If they are unequal, then certificate
verification has failed.

14.7.2 Authentication of the PIN Pad Public Key

The PSAM must determine the correct set of certificates to be
used for a transaction by examining the list of key versions
(VKPca psam) returned by the PIN Pad in its response to the Get
Key Check Value command.

PSAM Authentication of the PIN Pad public key consists of:

1. Determination that a public key hierarchy in the PIN Pad
can be processed by the PSAM.

2. Use of the Get PIN Pad Public Key Record command to
retrieve certificates from the PIN Pad.

3. Verification of the certificates.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

178

October 2013 179

TAPA Application Architecture Version 3.0

14.7.2.1 The PSAM must verify that a version (VKPca, pp)
of the CA public key used to create the PIN Pad
Creator certificate (and so identified in the
response to the Get Key Check Value command)
matches a version number of a PKca pp in the
PSAM. If there is no match, the process is
aborted.

14.7.2.2 The PSAM issues Get PIN Pad public key record
commands to obtain certificate records from
the PIN Pad. The PSAM must verify the
certificates in sequence:

e The PIN Pad Creator certificate, using the
ALGCA,pp and the PKCA,pp specified by the
VKPca pp.

e The PIN Pad certificate, using the ALGppc and
the PKppc retrieved from the PIN Pad Creator
certificate

14.7.2.3 The general checks in Section 14.7.1 must be
performed. If any of these fail then PIN Pad
public key authentication has failed.

14.7.2.4 The PSAM must also check that:

1. The IDppcreator retrieved from the PIN Pad
Creator certificate is the same as that
provided in the response to the Get Key
Check Value command.

2. The Format code retrieved from the PIN Pad
Creator certificate is equal to 'C2".

3. IDPPCREATOR and |Dpp retrieved from the PIN
Pad certificate are the same as those
provided in the response to the Get Key
Check Value command.

4. The Format code retrieved from the PIN Pad
certificate is equal to 'C4".

5. For each certificate, the month specified in
the Certificate Expiration Date is equal to or
later than the current month.

If any these checks fail, then the PIN Pad public

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

key has failed authentication.

14.7.3 Authentication of the PSAM Public Key

The PIN Pad contains one or more CA public keys (PKca,psam)
for the purpose of authenticating the PSAM in the POS device.
The PSAM must contain the necessary certificates for use with
d PKCA,PSAM in the PIN Pad.

PIN Pad authentication of the PSAM public key consists of:

1. Determination by the PSAM that the PIN Pad can process a
public key hierarchy in the PSAM.

2. Use of the Verify PSAM Public Key Certificate command to
send certificates from the PSAM to the PIN Pad.

3. PIN Pad verification of the certificates.

14.7.3.1

14.7.3.2

14.7.3.3

14.7.3.4

After receiving and validating the response to
the Get Key Check Value command (with KCVs
not identical), the PSAM must verify that a
version of the CA public key (VKPcapsam) in the
response to the Get Key Check Value command
matches a CA public key version under which
the PSAM is certified. If there is no match, the
process is aborted.

Certificates are provided to the PIN Pad using
the Verify PSAM Public Key Certificate as shown
in Section 7.2.3. The format of the certificate
records is described in Section 14.7.9.

The PSAM must send and the PIN Pad must
verify certificates in sequence:

e The Acquirer certificate, using the
ALGCA,pSAM and the PKCA,PSAM specified by the
VKPca,psam.

e The PSAM certificate, using the ALGacq and
the PKacq retrieved from the Acquirer
certificate

The general checks in Section 14.7.1 must be
performed. If any of these fail then PSAM public
key authentication has failed.

The PIN Pad must also check that

1. RIDpsamcreator @and IDpsamcreator retrieved

Copyright © 2013 Nets Denmark A/S

All rights reserved.

180

October 2013

TAPA Application Architecture Version 3.0

from the PSAM certificate are the same as
the RIDpsamcreator and IDpsamcreaTor
retrieved from the Acquirer Certificate,
which in turn are the same as the
RIDpsamcreator and IDpsamvicreator in the Get
Key Check Value command.

2. The Format code retrieved from the
Acquirer certificate is equal to 'A2'.

3. |Dpsam retrieved from the PSAM certificate is
the same as the IDpsap provided in the Get
Key Check Value command.

4. The Format code retrieved from the PSAM
certificate is equal to 'A4'.

5. For each certificate the last day of the
month specified in the Certificate Expiration
Date is equal to or later than the PIN Pad
reference date (if it has one).

If any these checks fail, then the PSAM public
key has failed authentication.

14.7.4 DES and Triple DES

DES and Triple DES are block ciphers standardized in FIPS PUB
46-3.

DES, denoted DES()[], operates on a 64-bit input block and a
64-bit key to produce a 64-bit output block. The number of
effective key bits in a DES key is only 56 because every 8th bit
of the 64-bit key takes on the value of a parity bit, thereby
ensuring that there are an odd number of "1"s in each key
byte.

Triple DES, denoted DES3()[], is implemented using three
iterations of the DES block cipher with two independent DES
keys K; and K,.

Specifically, the cipher text Y of an 8-byte input block X is
Y = DES3(Ky, K3)[X] = DES(Kl)[DES'l(Kz)[DES(Kl)[X]]].
Decryption is performed as

X = DES3}(Ky, K3)[Y] = DES™(K1)[DES(K5)[DES™(K1)[Y]]]

Note that for general encryption the padding and blocking
process in Section 14.7.5 should be adhered to.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

181

October 2013

TAPA Application Architecture Version 3.0

182

14.7.5 Encryption and Decryption

14.7.5.1

14.7.5.2

14.7.5.3

To encrypt any message, MSG, it must first be
padded to the right with ‘80’ and then with as
many ‘00’ bytes as necessary (possibly zero)
until it is a multiple of 8 bytes:

X :=MSG||'80'|]'00'||...| |'00";

X is then divided into 8-byte blocks X3, X5, .., Xk
and processed using Triple DES in Cipher Block
Chaining mode:

Yo = “0000000000000000’
Yi = DES3(K1,K2)[Xi @ Yi-l] fori=1tok
The encrypted message is

Enc(Ky,K)IMSG] : =Y =Yy || ... || Vi

Note that this process always involves message padding so
that when the message is an eight-byte PIN block the
ciphertext will be 16-bytes long.

14.7.5.4

In order to decrypt a ciphertext message the
encryption processed is merely reversed as
shown below.

1. If the ciphertext is not a multiple of 8 bytes
then decryption has failed.

2. Divide the ciphertext Y into 8 byte blocks:
Yo=Y || ..]] Yk
3. Compute the blocks X; as follows:

Xi = DES3™ (K., Ko)[Yi] @ Yiu fori=1tok,
where Y, = “0000000000000000’

4. Concatenate the blocks X; to form
Xo=Xy [X2 || o] Xk

5. Strip off all trailing zero bytes (possibly
none) from X and then the final ‘80’ byte to
form MSG. If this last step is not possible
then decryption has failed.

6. If all the preceding steps are successful then

Copyright © 2013 Nets Denmark A/S

All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

14.7.6 MAC computation

Dec(Ky,K)[Y] := MSG

MACs are computed using DES in Cipher Block Chaining Mode
with Triple DES applied to the last block.

The MAC computation is denoted by MAC(K4, K;)[D]. The
computation conforms to ISO/IEC 9797-1:1999 Mechanism 3,
using padding method 2 and DES as the block cipher. This is
also described in EMV annex E1.2.

14.7.6.1

14.7.6.2

14.7.6.3

14.7.7 RSA Operations

14.7.7.1

14.7.8 RSA Padding

14.7.8.1

Input D to the MAC is first padded to the right
with ‘80’. The result is then padded to the right
with enough bytes of ‘00’ (possibly none) to
make the result a multiple of 8 bytes long.

X:=MSG|['80'[['00'||...] |'00";

X is then divided into 8-byte blocks X3, X5, .., Xk
and processed using Single DES in Cipher Block
Chaining mode:

Yo = “0000000000000000
Yi = DES(Kl)[Xl @ Yi-l] fori=1tok
Finally the 8-byte MAC is computed as

MAC(K1,K2)[D] := DES(K1)[DES ™ (K2)[Yi]]

All RSA operations must be performed as
described in reference 6, EMV, annexes E and F.

The RSA encipher function corresponds to the
Recover function defined in reference 6, EMV,
Annex F.

The RSA decipher function corresponds to the
Sign function defined in reference 6, EMV,
Annex F.

The process of RSA padding of data D of length
96 bytes (768 bits) to a length L bytes (where L
>113) is as defined below.

Copyright © 2013 Nets Denmark A/S

All rights reserved.

183

October 2013 184

TAPA Application Architecture Version 3.0

1. Generate a 16 byte random numberrand a
1-byte random number a. whose most
significant bit is forced to ”0”.

2. Form G(r) by concatenating

SHA-1 (r || ‘00’) || SHA-1(r | | ‘01’) || SHA-
1(r |] ‘02’) | | etc... until its length equals or
exceeds L-17 bytes and then take the
leftmost L-17 bytes as G(r).

3. Pad D to the left with (L-113) bytes of binary
zeros. (D will now have a length of L-17
bytes).

4. Compute:

PADD):= || (D®G(r)) || (r® SHA (D ® G(r),
16))

14.7.8.2 D is recovered from PAD(D) as follows:
1. Define PAD(D):=a || B ||y, where

a is the first byte of PAD(D)

[is the next L-17 bytes of PAD(D), and
corresponds to D @ G(r)

v is the next (and final) 16 bytes of PAD(D)

2. Skip the first byte, a;
3. Compute R:=SHA(B, 16) @y
4. Compute G(R)

5. Dis the rightmost 96 bytes of } © G(R)

14.7.9 Certificate Formats

14.7.9.1 The Acquirer Certificate must have the format
defined in Table 171.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 171: Format of the Acquirer Certificate (PKCpcq)

Field Contents Length
Header Certificate Header 1
‘6A’ - if there is an associated remainder field (PKRacq),
‘AA’ - if there is no associated remainder field
Format Code Certificate Format (‘A2’) 1
RIDpsam RID of the PSAM Creator 5
IDpsaMCREATOR Identifies PSAM Creator / Acquirer 4
CED Certificate expiration date (MMYY) 2
CSNacq Binary number unique to this certificate assigned by the 3
certification authority (i.e. Primary Acquirer)
ALGH Identifies the algorithm used to create the hash value. 1
‘01’ indicates SHA-1.
ALGpcq Identifies the algorithm used to verify the next lower 1
level certificate
LPKMacq Length of the modulus of the acquirer public key 1
Filler ‘00’ 1
PKMacq Acquirer public key modulus or the leftmost bytes of LPKMca, psam -
the modulus. Padded to the right with ‘BB’ if the length 41
of the modulus is less than LPKMcp psam -41. If the
length of the modulus is > LPKMcp psam -41, the
rightmost bytes (beginning in position LPKMcp psam -40)
are kept in PKRacq.
Hash Result Hash of certificate data 20
Trailer ‘BC’ 1
14.7.9.2 The PSAM Certificate must have the format defined
in Table 172.
Table 172: Format of the PSAM Certificate (PKCpsam)
Field Contents Length
Header Certificate Header 1

‘6A’ - if there is an associated remainder field (PKRpsam),
‘4N’ - if there is no associated remainder field

Copyright © 2013 Nets Denmark A/S
All rights reserved.

185

October 2013

TAPA Application Architecture Version 3.0

format defined in Table 173.

Field Contents Length
Format Code Certificate Format (‘A4’) 1
RIDpsam RID of the PSAM Creator 5
IDpsaMCREATOR Identifies PSAM Creator / Acquirer 4
IDpsam Identifier of the PSAM 4
CED Certificate expiration date (MMYY) 2
CSNpsam Binary number unique to this certificate assigned by the 3
PSAM Creator
ALGH Identifies the algorithm used to create the hash value. 1
‘01’ indicates SHA-1, and is the only algorithm
supported.
ALGpsam Identifies the algorithm used to verify the dynamic 1
signature created by the PSAM
LPKMpsam Length of the modulus of the PSAM public key 1
Filler ‘00’ 1
PKMpsam PSAM public key modulus or the leftmost bytes of the LPKMpcq-45
modulus. Padded to the right with ‘BB’ if the length of
the modulus is less than LPKMucq-45. If the length of
the modulus is > LPKMcq-45, the rightmost bytes
(beginning in position LPKMucq-44) are kept in PKRpsay-
Hash Result Hash of certificate data 20
Trailer ‘BC’ 1
14.7.9.3 The PIN Pad Creator certificate must have the

Table 173: Format of the PIN Pad Creator Certificate (PKCppc)

Field Contents Length
Header Certificate Header 1
‘6A’ - if there is an associated remainder field (PKRppc),
‘47’ - if there is no associated remainder field
Format Code Certificate Format (‘C2’) 1
IDppcreaToR PIN Pad Creator ID 4

Copyright © 2013 Nets Denmark A/S
All rights reserved.

186

October 2013

187
TAPA Application Architecture Version 3.0
Field Contents Length
CED Certificate expiration date (MMYY) 2
CSNppc Binary number unique to this certificate assigned by the 3
certification authority
ALGH Identifies the algorithm used to create the hash value. 1
‘01’ indicates SHA-1.
ALGppc Identifies the algorithm used to verify the next lower 1
level certificate
LPKMppc Length of the modulus of the PIN Pad Creator public 1
key
Filler ‘00’ 1
PKMppc PIN Pad Creator public key modulus or the leftmost LPKMca, pp -36
bytes of the modulus. Padded to the right with ‘BB’ if
the length of the modulus is less than LPKMca, pp - 36. If
the length of the modulus is > LPKMc, pp -36, the
rightmost bytes (beginning in position LPKMcx pp - 35)
are kept in PKRppc.
Hash Result Hash of certificate data 20
Trailer ‘BC’ 1
14.7.9.4 The PSAM Certificate must have the format
defined in Table 174.
Table 174: Format of the PIN Pad Certificate (PKCsp)
Field Contents Length
Header Certificate Header 1
‘6A’ - if there is an associated remainder field (PKRpp),
‘AA’ - if there is no associated remainder field
Format Code Certificate Format (‘C4’) 1
IDppcreaToR Unique identifier of the PIN Pad Creator 4
IDpp PIN Pad Identifier 4
CED Certificate expiration date (MMYY) 2

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Field Contents Length
CSNpp Binary number unique to this certificate assigned by the 3
certification authority (i.e. PIN Pad CA)
ALGH Identifies the algorithm used to create the hash value. 1
‘01’ indicates SHA-1, and is the only algorithm
supported.
ALGpp Identifies the algorithm used to verify the dynamic 1
signature created by the PIN Pad
LPKMpp Length of the modulus of the PIN Pad public key 1
Filler ‘00’ 1
PKMpp PIN Pad public key modulus or the leftmost bytes of the LPKMppc - 40
modulus. Padded to the right with ‘BB’ if the length of
the modulus is less than LPKMppc - 40. If the length of
the modulus is > LPKMppc - 40, the rightmost bytes
(beginning in position LPKMppc - 39) are kept in PKRpp.
Hash Result Hash of certificate data 20
Trailer ‘BC 1

14.7.10 Expiration of Certificates

14.7.10.1 A certificate ceases to be valid after its

Certificate Expiration Date. Acquirers must
ensure that CA public keys are no longer used
after their expiry date as dictated by the CA.

14.7.11 Replacement of Keys and Certificates

14.7.11.1 It must not be possible to change the PSAM and
PIN Pad private keys (and associated public key

certificates) after personalization.

Note that this may impact the minimum length
of the PIN PAD Creator Public Key and the PIN

Pad Public Key chosen.

14.7.12 Revocation of Certificates

The revocation of certificates is not described by this
specification. If the acquirer’s implementation permits

certificate replacement, then that process may be used to

replace revoked certificates.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

188

October 2013 189

TAPA Application Architecture Version 3.0

14.7.13 Key Lengths

14.7.13.1 The minimum and maximum length of the
public key modulus (LPKM) must be according
to Table 175.

Table 175: Length of Public Key Modulus

Minimum length (bits) Maximum length (bits)
LPKMca, psam 1024 1952 (244 bytes)
LPKMca, pp 1024 1952 (244 bytes)
LPKMaca 1024 1664 (208 bytes)

< LPKMca, psam

LPKMpec 1024 1664 (208 bytes)
< LPKMc, oo

LPKMpsam 1024 1536 (192 bytes)
< LPKMACQ

LPKMep 1024 < LPKMpgpc

Note: Use of shorter RSA keys will limit the useful lifetime of the keys.
Some implementations may require longer minimum key lengths than are
specified here.

14.7.13.2 The key length (in bits) of the RSA moduli must
always be an integer multiple of 16.

14.8 PIN Pad-less Secure Cryptographic Device

Terminals that do not support a PIN Pad, the keys protecting
the exchange of data with the PSAMs need to be created in
another Secure Cryptographic Device, e.g. a Secure Card
Reader. This Secure Cryptographic Device may be created
using the same PKC key management scheme as for a PIN Pad
and must derive the keys necessary for protecting the data
exchanged.

Other key management schemes may be used for the KEYpp.
These are out of scope for this specification.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 190

TAPA Application Architecture Version 3.0

14.9 Response Codes

This section contains a summary of Response Codes that may
be generated by various components of the terminal
application.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

Table 176: Summary of Response Codes

Response Code Source Address Description
Router

'FFFO' None Invalid Source Address: the source
address does not match the originator
of the message.

'FFF1' None Invalid Destination Address: the
message cannot be delivered because it
contains an invalid destination address.

Common Handler Response Codes
‘0000’ Any Successful
‘FF34’ ‘0302’/‘0304’ Unknown Message Code
‘0402’/'0404’

'FFF2' Any Time-out: the requested operation is
valid, but some external event
necessary for the proper execution
failed to arrive in time.

'FFF3' Any Handler Error: generic message that an
unspecified error has occurred.

'FFF4' Any Handler must be initialized: the Handler
cannot perform the requested action
until it has been initialized.

'FFF5' Any Handler busy: the Handler received the
message but is unable to process it at
this moment. The requesting Handler
must try again later

'FFF6' Any Insufficient resources: the requested
operation is valid, but insufficient
resources exist to successfully execute
the requested function.

'FFF7' Any Handler must be opened: the Handler is
not in open status and therefore cannot
perform the requested action.

'FFF8' Any Handler is already open

'FFF9' Any Handler already closed

Copyright © 2013 Nets Denmark A/S
All rights reserved.

191

October 2013

TAPA Application Architecture Version 3.0

Response Code Source Address Description

'FFFA' Any Handler cannot be opened: an error
indicating that the Handler cannot be
opened.

'FFFB’ Any Unsupported operation: the Handler
has received a command or an
associated data set that was
unrecognized or unsupported.

'FFFC’ Any Handler cannot be closed: an error
indicating that the Handler cannot be
closed.

'FFFD’ Any Transaction interrupt request: an
interrupt indicating that the current
transaction shall be terminated
gracefully

‘OXXX’ Any Warning Codes: Reserved for
Proprietary Use

“AXXX Any Error Codes: Reserved for Proprietary
Use

PSAM Handler (0)

'FF23' '0202'/'0203' Card did not respond

'FF24' '0202'/'0203' No card in reader

'FF25' '0202'/'0203' Unrecoverable Transmission error

'FF26' '0202’/°0203' Card buffer overflow

'FF27' '0202’/°0203' Unrecoverable Protocol error

'FF28' '0202’/°0203' Response has no status words

'FF29' '0202’/°0203' Invalid buffer

'FF2A' '0202’/°0203' Other card error

Multi-Application Driver Handler (1)
Card Handler (2)

Copyright © 2013 Nets Denmark A/S
All rights reserved.

192

October 2013

TAPA Application Architecture Version 3.0

Response Code Source Address Description

'FF20' ‘0201’ Unrecoverable Transmission error
between reader and magnetic stripe

'FF21' '0201" Output buffer overflow

'FF22' '0201" Write operation failed

'FF23' '0202’/°0203' Card did not respond

'FF24' '0202’/°0203' No card in reader

'FF25' '0202’/°0203' Unrecoverable Transmission error

'FF26' '0202’/0203' Card buffer overflow

'FF27' '0202’/°0203' Unrecoverable Protocol error

'FF28' '0202’/°0203' Response has no status words

'FF29' '0202’/0203' Invalid buffer

'FF2A' '0202’/°0203' Other card error

'FF2B' '0202’/°0203' Card partially in reader

‘FF82’ ‘0202’ Authentication Error (MAC validation
failed

‘FF87’ ‘0202’ Secure Cryptographic Device not in PIN
Entry State

User Interface Handler (3)

'FF30' ‘0302’ Out of border

'FF31' ‘0302’ Printer out of paper

'FF32' ‘0302’ Printer has signalled an error

'FF33' ‘0302’ Printer does not appear to be connected
and online

‘FF34’ ‘0302’//0304’ Unknown message code

‘FF35’ ‘0302'/'0304’ Code Table not supported

‘FF80’ ‘0301’ No KCV available, KSES not present

‘FF81’ ‘0301’ Wrong PIN Pad ID

Copyright © 2013 Nets Denmark A/S
All rights reserved.

193

October 2013

TAPA Application Architecture Version 3.0

Response Code Source Address Description
‘FF82’ ‘0300’/‘0301’/ Authentication Error (MAC validation
'0302’ failed)
‘FF83’ ‘0301’ PSAM Identifier not recognized
‘FF84’ ‘0301’ Parameters out of range
‘FF85’ ‘0301’ Key Check values not identical,
synchronization necessary
‘FF86’ ‘0301 PIN not available
‘FF87’ ‘0301’ Secure Cryptographic Device not in PIN
Entry State
‘FF88’ ‘0301’ Termination Failed
‘FF89’ ‘0301’ Record not found
‘FF8A’ ‘0301’ Signature Error
‘FF8B’ ‘0301’ Hash Error
‘FF8C’ ‘0301’ Certificate Error
‘FF8D’ ‘0301’ Hash algorithm not supported
‘FF8E’ ‘0301’ PK Algorithm not supported
‘FF8F’ ‘0301’ Hash result invalid
‘FFO0’ ‘0301’ RSA key mismatch. VKP not recognized
‘FFO1’ ‘0301’ Certificate format error
‘FF92’ ‘0301’ Certificate expired
‘FF93’ ‘0301’ Certificate ID mismatch
Merchant Application Handler (4)
'FF30' ‘0402 Out of border
'FF31' ‘0402’ Printer out of paper
'FF32' ‘0402’ Printer has signalled an error
'FF33' ‘0402’ Printer does not appear to be connected
and online

Copyright © 2013 Nets Denmark A/S
All rights reserved.

194

October 2013

TAPA Application Architecture Version 3.0

Response Code Source Address Description

‘FF34’ ‘0402’ /'0404’ Unknown message code

‘FF35’ ‘0402'/'0404’ Code Table not supported

‘FFA0’ Any Invalid Currency

‘FFA1’ Any Invalid Currency Exponent

‘FF42’ Any Invalid Transaction Results

Data Store Handler (5)

'FF50' ‘0500’ Invalid record pointer. Record pointer
outside the range defined for the
current structure (Has not been added
yet).

'FF51' ‘0500 Invalid File ID

'FF52' ‘0500 Record too large

'FF53' ‘0500’ Search key too large

'FF54' ‘0500 File creation error.

'FF55' ‘0500 File could not be accessed.

'FF56' ‘0500’ File seek error. A selected record could
not be found.

'FF57' ‘0500 File read error.

'FF58' ‘0500 File write error.

‘FF59’ ‘0500’ Search key already existing

Communication Handler (6)

'FF60' ‘0600’ Invalid session setup parameters.

'FF61' ‘0600’ No connection

‘FF62’ ‘0600’ Connection in progress

Event Handler (7)
‘FF72’ ‘0700’ No Events in Queue

Copyright © 2013 Nets Denmark A/S
All rights reserved.

195

October 2013

TAPA Application Architecture Version 3.0

Response Code

Source Address

Description

‘FF73’

‘0700

No Matching Events in Queue

14.10 Message Codes

This section contains a list of Message codes that can be used
to send pre-defined text messages to displays or to printers.

Table 177:

Message Codes

Message Code

Text Message

01 (Amount)

02 (Amount) OK?
03 Approved

04 Call your Bank
05 Cancel or Enter
06 Card Error

07 Declined

08 Enter Amount
09 Enter PIN

0A Incorrect PIN
0B Insert Card

ocC Not Accepted
oD PIN OK

OE Please Wait

OF Processing Error
10 Remove Card

11 Use Chip Reader
12 Use Mag Stripe

Copyright © 2013 Nets Denmark A/S
All rights reserved.

196

October 2013

TAPA Application Architecture Version 3.0

Message Code Text Message

13 Try Again

14-3F Reserved for future definition
by EMV

40 System Error, Please Try Again

41 Invalid Card

42 Card out-of-order

43 Expired Card

44 Insufficient value

45 Card not present

46 Data Store full

47 Timed Out

48 Thank You

49 Not Available

4A Print Receipt?

4B Cancel

4Cc Make Selection

4D Incorrect Amount

4E Welcome

aF Signature

50 Application Menu

51 Transaction Menu

52 Purchase

53 Page

54 PIN Blocked

55 Enter new PIN

56 PIN Changed

Copyright © 2013 Nets Denmark A/S

All rights reserved.

197

October 2013

TAPA Application Architecture Version 3.0

Message Code Text Message
57 PIN Unchanged
58 2 PINS not same
59 Confirm new PIN
5A Change PIN

5B Unblock PIN

5C PIN not blocked
5D PIN Unblocked
5E Calling...

5F Transmitting...
60 Receiving...

61 Comms Error

62 Disconnecting
63 Trans Log Upload
64 Retrying

65 Upload Done

66 Upload Failed

67 No Records

68 Debit :

69 Credit :

6A Credit Reversal:
6B Cash Load :

6C Balance:

6D New Balance:

6E Specify Amount
6F Recovery Needed

Copyright © 2013 Nets Denmark A/S

All rights reserved.

198

October 2013

TAPA Application Architecture Version 3.0

Message Code Text Message
70 Insufficient Funds
71 Recovery Failed
72 Recovery Done
73 Money taken

74 Show Balance
75 Statement Review
76 by issuer

77 Upload Time

78 Start (HH:MM):
79 End (HH:MM):
7A Prefix Nr

7B Totals

7C Auth X25 Nr

7D Upload X25 Nr
7E Nr Trials :

7F Delay :

80 Onl Auth. Data
81 Onl Upload Data
82 Get cash

83 Unblock Appli.
84 Pre-Autho.

85 Pre Completion
86 Refund

87 Cancellation

88 D/C Menu

Copyright © 2013 Nets Denmark A/S
All rights reserved.

199

October 2013

TAPA Application Architecture Version 3.0

Message Code Text Message

89 Precomp. Number
8A GET Merchant PIN
8B Data required in the database
8C Interval (MM)

8D Number Attempts
8E Load Stop List

8F Pick up Card

90 Denied:

91 View Balance?

92 Do not honour

93 Expired card

94 Suspected fraud
95 PIN exceeded

96 Refer Issuer

97 Not card number
98 Excessive amount
99 Counterfeit card
9A Format error

9B Card issuer or

9C Switch inop.

9D Bad Routing

9E Sys malfunction
9F Yes

AO No

Al Capture Card

Copyright © 2013 Nets Denmark A/S

All rights reserved.

200

October 2013

TAPA Application Architecture Version 3.0

Message Code Text Message

A2 Money not taken

A3 Exp. date (YYMM)

A4 Enter PAN

A5 Enter Term ID

A6 Params Required

A7 Forced online

A8 Sale:

A9 Refund:

AA Purse empty

AB Set currency

AC Currency changed

AD Terminal id :

AE Exceeds limit

AF Invalid currency

BO-DF Reserved for Future Use
EO-FF Reserved for Proprietary Use

Copyright © 2013 Nets Denmark A/S

All rights reserved.

201

October 2013 202

TAPA Application Architecture Version 3.0

15. Data Elements

15.1.1 AIDn

Purpose: To indicate an AID that is supported by the PSAM, and which PSAM
application is to be used to process transactions for that AID. Used
during the Application Selection process.

Format: 5-16 bytes (binary).

Contents: RID || PIX where the RID is the five-byte global registered identifier as
specified in ISO/IEC 7816-5 and the PIX (0-11 bytes) is at the scheme
provider’s discretion.

15.1.2 ALG

Purpose: To indicate the public key algorithm used in public key cryptography
during the synchronization between a PIN Pad and a PSAM application.
It also indicates the value of the public key exponent that is certified by
this certificate.

Format: 1 byte (binary).

Content: See Table 178

Remarks: Used to identify the algorithm that is used to verify the next lower level
certificate or signature. The subscript indicates the certificate containing
the ALG.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 203

TAPA Application Architecture Version 3.0

Table 178: Coding of ALG

b8 b7 b6 b5 b4 b3 b2 bl Meaning

X X X X X Value of public key exponent

0 0 0 0 1 2

0 0 0 1 0 3

1 0 0 0 0 2%+1

All other values RFU
X X X Usage of Public Key Algorithm
0 0 1 - RSA Dynamic Authentication
X X X - (xxx Z 001) RFU

15.1.3 ALGH

Purpose: To indicate the algorithm used to produce a hash value in a public key
certificate or signature.

Format: 1 byte (binary).
Content: '01' indicates SHA-1. SHA-1 is the only algorithm supported.

15.1.4 Amount Confirmed Indicator

Purpose: Indicates whether the amount has been confirmed.
Format: 1 byte (binary).
Content: '00' - the amount is confirmed

'01' - the amount has not been confirmed.
‘02’ — the transaction has been cancelled by the user

Remarks: Values other than '00', '01' and '02' are RFU.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

204

TAPA Application Architecture Version 3.0

15.1.5 Application Status Words (ASW1, ASW2)

Purpose:

Format:

Content:

Indicates the results of a “process” command sent to the PSAM.
2 bytes (binary).
As defined in section 10.3.2

15.1.6 ATR (Answer To Reset)

Purpose:

Format:

Content:

Conveys the ATR returned by an IC card.
Variable length, binary format

As defined in ISO 7816-3 and EMV

15.1.7 [C-APDU]

Purpose:

Format:

Content:

15.1.8

Purpose:

Format:

Content:

15.1.9

Purpose:

Format:

Content:

To hold an encrypted Card Command being sent to an ICC.
Variable length

A C-APDU encrypted under the current PIN session encryption key
(KSESpin).

Card Command
To convey a Command APDU being sent to an IC card.
variable length

A C-APDU as defined in reference 3, ISO/IEC 7816-4.

Card Response
To convey a Response APDU from an IC card.
variable length

A complete R-APDU, including the Status Words, as defined in reference
3, ISO/IEC 7816-4.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

205

TAPA Application Architecture Version 3.0

15.1.10 CHALLENGE

Purpose: A number generated by the PIN Pad or PSAM, which allows each to
authenticate that messages have been received from a valid device.

Format: 4 bytes (binary).

Content: Any non-repeating or random value.

Remarks: The subscript indicates whether the PIN Pad or the PSAM generated the
Challenge.

15.1.11 CLA (Class byte)

Purpose: To form a command code.

Format: 1 byte (binary).

Remarks: CLA is the ISO assigned instruction class byte, which in conjunction with

the INS field forms the command code. See ISO/IEC 7816-4 for a
discussion of the Class byte.

15.1.12 CNTap

Purpose: To indicate the number of AIDs being returned in the response to a Get
Supported AIDs command.

Format: 1 byte (binary).
Content: 8-bit value, coded as an unsigned integer.
Remarks: Used with the command "Get Supported AIDs".

15.1.13 CNTsuBappress

Purpose: To indicate the number of sub-addresses being returned in the response
to the Get Handler Addresses command

Format: 1 byte (binary).
Content: Holds the number of sub-addresses returned.
Remarks: Used with the command Get Handler Addresses

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 206

TAPA Application Architecture Version 3.0

15.1.14 Code Table Index

Purpose: Identifies the character set in which display, printer or key-entered data
is coded.

Format: BCD, 1 byte

Content: ‘00’ indicates the Command Character Set defined in reference 6, EMV
Annex C.

‘nn’ indicates a code table as defined in reference 8, ISO 8859.

15.1.15 CSN (Certificate Serial Number)

Purpose: Unigue number assigned to the certificate by the creator of the
certificate.

Format: 3 bytes (binary).

Content: A unigue number for a certificate.

15.1.16 CURR (Currency)
Purpose: Identifies the currency for a transaction

Format: BCD, 3 bytes in the form ‘Oc cc 0e’, where ccc is the code assigned to the
currency by ISO 4217, and e is the exponent.

Content: CURR contains both the currency code (CURRC) and the exponent
(CURRE)

15.1.17 CURRC (Currency Code)
Purpose: Identifies the currency for a transaction

Format: BCD, 2 bytes in the form ‘Oc cc’, where ccc is the code assigned to the
currency by ISO 4217.

Content: CURRC contains only the currency code

15.1.18 CURRE (Currency Exponent)

Purpose: Identifies the exponent of the currency of a transaction
Format: BCD, 1 bytes in the form ‘Oe’
Content: CURRE contains only the currency exponent

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

207
TAPA Application Architecture Version 3.0

15.1.19 Destination Address (DAD)

Purpose: To identify the device to which a terminal message must be delivered.
Format: 2 bytes (binary).

Content: A handler address.

15.1.20 DS (Digital Signature)

Purpose: A digital signature created by the PSAM to allow the PIN Pad to
authenticate the PSAM during synchronization

Format: Variable length (binary) (The length of the PSAM public key modulus
(LPKMpsam) determines the length of DS.

Content: See section 7.2.4

15.1.21 DTHRppa (Transaction date and time)

Purpose: To indicate a date and time.
Format: 5 bytes (BCD).
Content: 10 BCD digits: YYMMDDHHMM.

15.1.22 Enc(KSESew)[PIN]

Purpose: To hold an encrypted PIN block.

Format: 16 bytes (binary).

Content: Encrypted PIN block.

Remarks: See Table 83 for the format of the PIN block.

15.1.23 Error Response Data

Purpose: To hold application specific response data.
Format: Variable length.
Content: Application-specific error response data.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

208

TAPA Application Architecture Version 3.0

15.1.24 Event Type Code

Purpose: To indicate the type of event.

Format: 1 byte (binary).

Content: See Table 157.

15.1.25 Event Location

Purpose: To indicate the handler that posted an event.

Format: 2 bytes (binary).

Content: A handler address.

15.1.26 File Identifier (IDiLe)

Purpose: Identifies a particular file that has been created in the data store.

Format: 2 bytes (binary).

Content: The unique identifier of a file.

Remarks A value of zeros (‘0000’) is not valid

15.1.27 Filler

Purpose: Used to fill out a record or block

Format: 1 byte (binary).

15.1.28 Format Code

Purpose: To indicate the type of certificate.

Format: 1 byte (binary).

Content: 8-bit value, unsigned integer.

Remarks: Examples of Format Codes: 'C2' = PKCppc, 'C4" = PKCpp, 'A2' = PKCpcq, ‘A4’
= PKCpsam

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 209

TAPA Application Architecture Version 3.0

15.1.29 Handler Category Address

Purpose: Indicates the address of a Handler Category
Format: 1 byte (binary).
Content: Each device handler category is assigned a one-byte address. Individual

handlers are located by their handler category address, followed by a
sub-handler address.

15.1.30 Handler Sub-Address

Purpose: In combination with the Handler category address, identifies a particular
handler.

Format: 1 byte (binary)

Content: Each device handler is assigned a two-byte address. Individual handlers
are located by their handler category address, followed by a sub-handler
address.

15.1.31 Historical Bytes

Purpose: The historical bytes are an optional element in the Answer-to-Reset
from an IC card. The historical bytes designate general information, for
example, the card manufacturer, the chip inserted in the card, the
masked ROM in the chip, the life-cycle state of the card.

Format: 0-15 bytes (binary).

Remarks: The contents of the historical bytes are at the discretion of the card
issuer. See reference 3, ISO/IEC 7816-4 for additional information.

15.1.32 IDpp (PIN Pad ID)

Purpose: To identify a PIN Pad

Format: 4 bytes (binary).

Content: Serial number of the PIN Pad assigned by the PIN Pad Creator.
Remarks: Assigned by the entity identified by IDppcreator. With the IDppcreator

identifies a PIN Pad within a POS device.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 210

TAPA Application Architecture Version 3.0

15.1.33 IDppcreator (Identifier for the Creator of a PIN Pad)

Purpose: To identify the system or entity that generates personalization data for
PIN Pads and assigns the IDpp.

Format: 4 bytes (binary).
Content: Number assigned to the PIN Pad Creator.
Remarks: Assigned by the primary acquirer. With the IDpp identifies a PIN Pad

within a POS device.

15.1.34 IDpsam (Identifier for a PSAM)

Purpose: To identify a PSAM.

Format: 4 bytes (binary).

Content: Serial number of the PSAM assigned by the PSAM Creator.

Remarks: Assigned by the entity identified by IDpsamcreator. With the RIDpsan and

the IDPSAMCREATOR uniquely identifies a PSAM.

15.1.35 IDpsamarp (TAPA PSAM Application Identifier)

Purpose: To identify a particular PSAM application
Format: 2 bytes (binary).
Content: e The first nibble is coded as follows:‘0’-‘7’ = application specification

defined by the international payment schemes.
= ‘0’ = CEP application, ‘1’-‘7’ = RFU

e ‘8-'F = proprietary application specification.

15.1.36 IDpsamcreator (Identifier for the Creator of the PSAM)

Purpose: To identify the system or entity which generates personalization data
for PSAMs and assigns the IDpsanm.

Format: 4 bytes (binary).

Remarks: Assigned by the owner of the RIDpsam. With the RIDpsanm, uniquely
identifies the entity creating a PSAM.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

211

TAPA Application Architecture Version 3.0

15.1.37 IDscueme (Acquirer reference number)

Purpose: Used to identify a particular AID or scheme supported by the Acquirer

Format: 1 byte (binary).

Remarks: Assigned by the Acquirer or processor.

15.1.38 INS (Instruction byte)

Purpose: To identify a command.

Format: 1 byte.

Remarks: Used in conjunction with CLA to identify a command. See ISO/IEC 7816-
4.

15.1.39 KCV (Key Check Value)

Purpose: To verify the status of the session key shared between a PSAM and a PIN
Pad.

Format: 3 bytes (binary).

Content: The 3 most significant bytes of the result of a triple-DES encryption of an
8-byte block of binary zeros.

Remarks: The subscript indicates whether the PSAM or the PIN Pad computed the

KCV.

15.1.40 KEKcpp

Purpose: A key encryption key used to protect the master session key used during
transfer from a secure Card Reader to the PSAM. Part of an independent
key chain used for Cardholder Data Protection (CDP) between the PSAM
and a Secure Cryptographic Device in a Terminal without a PIN Pad. The
initial value of the key is loaded into the PSAM during configuration.

Format: 16 bytes (binary).

15.1.41 Key Data

Purpose: The data to be used as a unique key for a data store record.
Format: LENskey bytes (binary).

Content: Any.

Remarks: Used when searching, adding and deleting data in records in files.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 212

TAPA Application Architecture Version 3.0

15.1.42 KEYcpp

Purpose: A master session key used to derive session keys that are used for
Cardholder Data enciphering and MACs between a Secure Cryptographic
Device and the PSAM.

Format: 16 bytes (binary).

15.1.43 KSES

Purpose: A master session key used to derive session keys that are used for PIN
encryption and MACs between the PIN Pad and the PSAM.

Format: 16 bytes (binary).

15.1.44 KSEScop

Purpose: To encipher Cardholder Data when transferred between the PSAM and
the Terminal.

Format: 16 bytes (binary).

Remarks: Generated by the PSAM based on the KEYcpp delivered from a Secure

Cryptographic Device.

15.1.45 KSESiniT

Purpose: To provide an initial key which is used to derive the first session key.
Format: 16 bytes (binary).
Remarks: Generated by the PSAM during synchronization with the PIN Pad.

15.1.46 KSESmac

Purpose: A session key used to authenticate messages exchanged between the
PSAM and the PIN Pad.

Format: 16 bytes (binary).

Remarks: Derived from the current master session key (KSES).

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 213

TAPA Application Architecture Version 3.0

15.1.47 KSESpin

Purpose: A session key used to encrypt PIN data being exchanged between the
PSAM and the PIN Pad.

Format: 16 bytes (binary).

Remarks: Derived from the current master session key (KSES).

15.1.48 L. (Data length)

Purpose: To indicate the number of bytes present in the data field of a command.
Format: 1 byte (binary).

Content: 8-bit value, coded as an unsigned integer.

Remarks: Omitted if no data is sent in a command. See ISO/IEC 7816-4.

15.1.49 L. (Expected data length)

Purpose: To indicate the maximum number of bytes expected in a response to a
command.

Format: 1 byte (binary).

Content: 8-bit value, coded as an unsigned integer.

Remarks: A value of ‘00’ indicates that the card must return all available data.

Please see ISO/IEC 7816-4.

15.1.50 Lpara (Data field length)

Purpose: To indicate the length of a data field in a Terminal Message.
Format: 2 bytes (binary).
Remarks Message data lengths of at least 512 bytes must be supported. Terminal

applications must only rely on the ability to send longer messages in a
proprietary environment.

15.1.51 LEN

Purpose: To indicate a length.

Format: 2 bytes (binary).

Content: 16-bit value, unsigned.

Remarks: Used to indicate a number of bytes to read.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 214

TAPA Application Architecture Version 3.0

15.1.52 LENampn

Purpose: To indicate the length of the N’th AID in the response to the Get
Supported AIDs PSAM command.

Format: 1 byte (binary).

Content: 8-bit value, coded as an unsigned integer.

15.1.53 LENRgc

Purpose: To indicate the length of a record.

Format: 2 bytes (binary).

Content: 16-bit value, coded as an unsigned integer.

Remarks: If the LENRgec is coded as '0000' in an Add Record message, the maximum

record size must be reserved. The actual record size is maintained as
‘0000’ until a subsequent “Update Record” message

15.1.54 LENskgy

Purpose: Indicates the length of the search key assigned to a file in the data store
Format: 1 byte (binary).

Content:

Remarks:

15.1.55 Length

Purpose: To indicate a length.
Format: 1 byte (binary).
Content: 8-bit value, coded as an unsigned integer.

15.1.56 LPKE (Length of a Public Key Exponent)

Purpose: To indicate the length of a Public Key Exponent.
Format: 1 byte (binary).
Remarks: The subscript indicates the exponent being referred to.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 215

TAPA Application Architecture Version 3.0

15.1.57 LPKM (Length of Public Key Modulus)

Purpose: To indicate the length in bytes of a Public Key Modulus.
Format: 1 byte (binary).
Remarks The subscript indicates the modulus being referred to.

15.1.58 MAC

Purpose: A MAC providing authentication of a data exchange between a PSAM
and PIN Pad.

Format: 8 byte (binary).

Remarks: The subscript indicates the particular message in which the MAC is

located. The data being MAC’ed is specified in each applicable message.

15.1.59 Magnetic Stripe Data

Purpose: To hold a set of data from a track.
Format: Variable

Content: Any.

Remarks: Includes u, Len and track Data.

15.1.60 Message Code

Purpose: To indicate a pre-defined message to be displayed or printed
Format: 1 byte (binary).
Content: See Table 177

15.1.61 Message Data

Purpose: The data portion of a Terminal message.
Format: Variable
Content: Specific to the Message Type

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 216

TAPA Application Architecture Version 3.0

15.1.62 Message Type

Purpose: To identify the type of message.

Format: 1 byte (binary).

Content: SeeTable 4, Table 5 and Table 6.

Remarks: If Message Type is 'FF' the message is a response, any other value

indicates the message type of a command.

15.1.63 NUMFILE

Purpose: To indicate the number of files to create.
Format: 1 byte (binary).
Content: 8-bit value, coded as an unsigned integer.

15.1.64 Pad Pattern

Purpose: Padding bytes required in a public key certificate or signature
Format: variable length (binary).
Content: Successive bytes containing 'BB'

15.1.65 PK (Public Key)

Purpose: A public key is used by an entity to verify a certificate or signature
created by the owner of the public key. The public key of a PIN Pad is
used by the PSAM for the purpose of encrypting messages to the PIN

Pad.

Format: Variable length (binary).

Remarks: The subscript indicates the entity to which the public key belongs. A
public key consists of the modulus (PKM) and the exponent (indicated in
the ALG field).

15.1.66 PKC (Public Key Certificate)

Purpose: A public key certificate is created by the next higher entity in the
certificate hierarchy.

Format: Variable length (binary). The length is the same of the length of the
signing public key modulus.

Remarks: The subscript indicates the entity to which the certificate belongs.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 217

TAPA Application Architecture Version 3.0

15.1.67 PKM (Public Key Modulus)

Purpose: A public key modulus is a component of a public key.
Format: Variable length (binary).
Remarks: The subscript indicates the entity to which the modulus belongs.

15.1.68 PKR (Public Key Remainder)

Purpose: Contains the rightmost bytes of the Public Key Modulus when the entire
modulus will not fit into the public key certificate.

Format: Variable length (binary).

Remarks: The subscript indicates the associated public key.

15.1.69 P1, P2 (Parameter bytes)

Purpose: To set up parameters for a PSAM command
Format: 2 bytes.
Remarks: See ISO/IEC 7816-4.

15.1.70 Pointer Orientation

Purpose: Indicates the starting location for a Get File Record, and “next record”
pointer that must be returned.

Format: 1 byte (binary).
Content: ‘01’-‘03’, See Table 131
Remarks: Values other than ‘01’-‘03’ are reserved for future use

15.1.71 Message Code

Purpose: To identify a predefined text for display or printing.
Format: 1 byte (binary).

Content: See Table 177

Remarks: Used by the "Print Message" and Display commands.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 218

TAPA Application Architecture Version 3.0

15.1.72 PIN Pad Identifier

Purpose: Unique PIN Pad identifier.

Format: 8 bytes (binary).

Content: IDppcreator | | IDpp.

15.1.73 PS

Purpose: A digital signature used to provide mutual authentication between a
PSAM and a PIN Pad, and to exchange the Initial Session Key (KSESy7).

Format: Variable, binary

Content: Encrypted digital signature of the PSAM. See 7.2.4

15.1.74 PSAM Identifier

Purpose: Unique PSAM identifier.
Format: 13 bytes (binary).
Content: RIDpsam | | IDpsamcreator | | IDpsam.

15.1.75 PSAM sub-address

Purpose: Identifies the Handler sub-address assigned to the PSAM.
Format: 1 byte (binary).
Content: The PSAM sub-address.

15.1.76 Record Data

Purpose: The data stored in a record in a file.
Format: LENRgec bytes.
Content: Data contained in a record in a given file.

15.1.77 Record Pointer

Purpose: To identify a record in a file.
Format: 2 bytes (binary).
Content: 16-bit value, unsigned.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 219

TAPA Application Architecture Version 3.0

Remarks A value of zeros (‘0000’) is not valid.
Once the record pointer has been assigned, it cannot be changed.

15.1.78 Record Tag

Purpose: Indicates the contents of a record read from the PIN Pad
Format: 1 byte.
Content: ‘85’

15.1.79 Response Code (RC)

Purpose: The Handler or Device uses the Response Code to indicate a problem
handling a Terminal Message command.

Format: 2 bytes (binary).
Content: See Table 176

15.1.80 Response Data

Purpose: Contains the data being returned in response to a card or PSAM
command.

Format: Variable

Content: The contents are specific to the command being responded to.

15.1.81 Returned String
Purpose: A string of data returned in response to a Read String message.

Format: Len bytes (binary).

15.1.82 RIDpsam (Registered Identifier Of The Entity Assigning
PSAM Creator Ids)

Purpose: To make the identifier of a PSAM Creator unique.
Format: 5 bytes (binary).
Remarks: The identifier of the entity that assigns identifiers to certified PSAM

Creators (IDpsamcreaTor), assigned as specified in ISO/IEC 7816-5.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 220

TAPA Application Architecture Version 3.0

15.1.83 Search Type

Purpose: To allow the application to search for a particular type of event (for
example, card inserted), and/or an event that occurred at a specific
device (for example, the customer keypad).

Format: 1 byte (binary).
Contents See Table 179.

Table 179: Search Type Coding

b8 b7 b6 b5 b4 b3 b2 bl Meaning

X X X X X X RFU

1 Search by Event Type

1 Search by Event Location

15.1.84 Session Data

Purpose: To hold data necessary to initiate a communication session.
Format: Var.
Content: Any.

15.1.85 SK (Private Key)

Purpose: An asymmetric private key used by a PSAM for the purpose of
generating signatures and by a PIN Pad for the purpose of decryption.

Format: Variable length, binary

Remarks: The subscript identifies the entity to which the key belongs

15.1.86 Source Address (SAD)

Purpose: To identify the source of a given command or response.
Format: 2 bytes (binary).
Content: A handler address.

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013 221

TAPA Application Architecture Version 3.0

15.1.87 Status Words (SW1, SW2)

Purpose: To indicate the result of a command sent to an ICC.

Format: 2 bytes (binary).

Content: See ISO/IEC 7816-4.

Remarks: A value of 96 01’ is used by the PSAM to indicate that additional

response data is available. The additional data is retrieved with a Get
Next command.

15.1.88 IDrtureap (Thread Identifier)

Purpose: To identify a particular thread in a multi-threading terminal

Format: 1 byte (binary).

Content: The Thread Identifier can have any value in the range '00' - 'FF'.
Remarks: The MAD Handler assigns the Thread Identifier. A value may be re-used

when a thread is completed.

15.1.89 Time

Purpose: To specify a time-out value.

Format: 4 bytes (binary).

Content: The time-out value in milliseconds.

Remarks: Time indicates the maximum time after which either data or an error

response must be returned

15.1.90 Timer Flag

Purpose: To indicate that a time-out value is specified.
Format: 1 byte (binary).
Content: '00' - the message is not timed

'‘80' - the message is timed.

15.1.91 Track Data

Purpose: To hold track data from a magnetic stripe.
Format: Variable
Content: Depends on the track being read

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

222

TAPA Application Architecture Version 3.0

15.1.92 Transaction Amount

Purpose:
Format:
Content:

Remarks:

To indicate the transaction amount.
4 bytes (binary).
The transaction amount is unsigned.

The value represents the lowest denominator for the corresponding
Currency Code, e.g. for USD, amounts are represented in 1/100 USD
units, i.e. cents.

15.1.93 Transaction Results

Purpose:

Format:

Content:

15.1.94 u
Purpose:
Format:
Content:

Remarks:

To indicate to the Merchant Application Handler the results of a
transaction, thus allowing the merchant equipment to dispense goods
or take other action as required.

1 byte (binary).

'00' - the transaction was successful
'01' - the transaction failed.

To identify the track(s) on the magnetic stripe to be read.
1 byte (binary).
The ISO identifier of the track to be read.

u can have the values '01', '02', '03', '0C', '0D', '17' and '7B' representing
track ISO 1, ISO 2, 1SO 3, 1SO 1&2, ISO 1&3, ISO 2&3 and ISO 1&2&3. The
highest bit is set if the track data to be returned are to be enciphered.

15.1.95 VKPca, xx

Purpose:

Format:

Remarks:

Indicates the version of the CA public key used to produced the PIN Pad
Creator or PSAM Creator certificate

1 byte (binary).

The subscript indicates which CA key is referenced

Copyright © 2013 Nets Denmark A/S
All rights reserved.

October 2013

TAPA Application Architecture Version 3.0

16. Acronyms

Acronym or Data

Element

AID
APDU
ASW
ATR
BCD
CA
CDP
CEPS
CLA
DES
DES3
DS
EMV
ICC
IEC
INS
ISO

KCv

MAD
MT
P1
P2
PED
PIN
PK
PS

PSAM

Description

Application Identifier

Application Protocol Data Unit

Application Status Words

Answer-to-Reset

Binary Coded Decimal

Certification Authority

Cardholder Data Protection

Common Electronic Purse Specifications
Class Byte of a Command APDU

Data Encryption Standard

Triple DES

Digital Signature

Europay, MasterCard and Visa

Integrated Circuit Card

International Electrotechnical Commission
Instruction Byte of the Command Message
International Organization for Standardization
Key Check Value

Length of Command Data Field

Expected Length of the Response Data Field
Message Authentication Code
Multi-Application Driver

Message Type

Parameterl

Parameter2

PIN Entry Device (PIN pad)

Personal Identification Number

Public Key

Public-key digital signature

Purchase Secure Application Module

Copyright © 2013 Nets Denmark A/S
All rights reserved.

223

October 2013

TAPA Application Architecture Version 3.0

Acronym or Data

Element

RC
RFU
RIDpsam
RSA

SCD

SHA

SK
SW1-SW2
TAPA
TED

var

Description

Response Code

Reserved for Future Use

Registered identifier of the entity assigning PSAM Creator IDs
Rivest, Shamir and Adleman (Cryptographic Algorithm)
Secure Cryptographic Device

Secure Hash Algorithm

Private Key

Status Words

Terminal Architecture for PSAM Applications

Tamper Evident Device

Variable

Copyright © 2013 Nets Denmark A/S
All rights reserved.

224

	Application Architecture Specification
	Version 3.0
	1. Revision Log
	2. Document Overview
	2.1 Purpose
	2.2 Intended Audience
	2.3 Included in this Document
	2.4 Not Included in this Document
	2.5 Reference Information
	2.5.1 Requirement Numbering
	2.5.2 References

	1. Terminal Architecture for PSAM Applications, Overview, version 2.0, April 2000.
	2. ISO/IEC 7816-3: 2006, “Identification cards - Integrated circuit cards with contacts - Part 3: Electrical interface and transmission protocols".
	3. ISO/IEC 7816-4: 2005, “Identification cards – Integrated circuit cards with contacts - Part 4: Organization, security and commands for interchange”.
	4. EMV Contactless Specifications for Payment Systems – V2.1, March 2011
	5. ISO/IEC 9797-1:2011 “Information technology - Security techniques - Message Authentication Codes (MACs) - Part 1: Mechanisms using a block cipher”
	6. EMV, version 4.3, November 2011 “Integrated Circuit Card Specification for Payment Systems” including later bulletins
	7. ISO/IEC 646: 1991, “Information technology - ISO 7-bit coded character set for information interchange“
	8. ISO 8859-15: 1999, “Information technology – 8-bit single-byte coded graphic character sets – Part 15: Latin alphabet No.9”
	9. ISO/IEC 7813: 2006, “Information technology – Identification Cards - Financial Transaction Cards”
	10. ISO/IEC 4909: 2006 “Identification cards – Financial transaction cards – Magnetic stripe data content for track 3”
	11. PCI SSC PTS, version 3.1, June 2011, “PIN Transaction Security”
	2.5.3 Command and Response Format Conventions
	2.5.4 Notational Conventions

	Hexadecimal Notation
	Binary Notation
	Document Word Usage
	Notation used in the PIN Pad Cryptography section
	2.6 Document Organization

	3. Architectural Overview
	3.1 Introduction
	3.2 General Requirements
	3.3 Terminal Application Architecture

	4. Functional Requirements
	4.1 The Router
	4.1.1 Functional Requirements
	4.1.1.1 The Router must validate the source and destination address and sub-address fields in messages received from an origination Handler to ensure they are defined in the specification and are also supported by the terminal application. This valid...
	4.1.1.2 The Router must not intervene or prevent routable messages from being delivered to a destination Handler.
	4.1.1.3 The Router should implement some error checking mechanism to ensure the data integrity of messages exchanged between handlers across physical interfaces. The mechanism implemented is left to the discretion of the terminal developer; however, ...

	4.1.2 Error Handling
	4.1.2.1 The Router must generate error messages if either the source or destination address is invalid.

	Table 1: Router Response Codes
	4.2 The Handlers
	4.2.1 Device Handlers
	4.2.2 Multi-Application Driver Handler
	4.2.3 Event Handler
	4.2.4 General Characteristics

	Table 2: Handler Address Assignments
	4.2.5 Functional Requirements
	4.2.5.1 A Handler that receives a command must always respond to the originator of that command (except as noted in Section 13.2.1).
	4.2.5.2 Prior to generating a response, a destination Handler must be permitted to issue commands to Handlers other than the originator of the initial command.
	4.2.5.3 A Handler must only respond to the originator of the command after all required subsequent dialogue has been completed with other Handlers.
	4.2.5.4 After sending a command, a Handler must not send another command to the same destination or for the same thread prior to receiving a response (except as noted in Section 13.2.1). (See section 5.5 for a discussion of multi-threading).
	4.2.5.5 When constructing a response, the responding Handler must use the source address and sub-address of the command message as the destination address and sub-address of the response. The Thread Identifier (IDthread) from the original command mess...
	4.2.5.6 A Handler should be limited to performing only those functions as needed to either directly support a particular device or manage a particular operation.
	4.2.5.7 When a Handler receives a command message from another terminal component, it must return a response to the requesting Handler.
	4.2.5.8 All Handlers must be able to receive and process messages with a message data length of at least 1024 bytes (Ldata (‘0200’). (Note: terminal applications must only rely on the ability to send longer messages in a proprietary environment).

	4.3 Message Handling

	Table 3: Terminal Message Format
	4.3.1 Time-out Management
	4.3.1.1 If the requested action cannot be performed, or the requested data is not available, then the recipient must respond with an error response.
	4.3.1.2 If a message includes a Timer Flag, and the requested action cannot be performed, the recipient must wait either until the action can be performed, or until the maximum time, as indicated (in milliseconds) in the Time field, has passed. If al...
	4.3.1.3 If either the Timer Flag is not set, or if the Time field contains a value of binary zeros, a response is required either when action is complete or when it is known that it cannot be completed.

	4.3.2 Exception Handling
	4.4 Handler-Independent Messages
	4.4.1 Get Handler Addresses
	4.4.1.1 The Get Handler command must conform to the format defined in Table 7.

	Table 7: Get Handler Addresses command
	4.4.1.2 The Get Handler Addresses response must conform to the format defined in Table 8

	Table 8: Response to Get Handler Addresses command
	4.4.1.3 The Response Codes applicable to the Get Handler Addresses command are listed in Table 9.

	Table 9: Response Codes to Get Handler Addresses command
	4.4.2 Open Handler
	4.4.2.1 All Handlers must be in the closed state before terminal start- up.
	4.4.2.2 The Open Handler command must conform to the format defined in Table 10.

	Table 10: Open Handler command
	4.4.2.3 The Open Handler response must conform to the format defined in Table 11.
	4.4.2.4 A response of “handler must be opened” must be returned if a Handler receives a terminal message prior to being opened.
	4.4.2.5 A response of “handler already opened” must be returned if a Handler receives the Open Handler command while already in open status.
	4.4.2.6 After successfully processing the Open Handler command, the handler must be capable of receiving and processing messages.

	Table 11: Response to Open Handler command
	4.4.2.7 The Response Codes applicable to the Open Handler command are defined in Table 12.

	Table 12: Response Codes to Open Handler command
	4.4.3 Close Handler
	4.4.3.1 The Close Handler command must conform to the format defined in Table 13.

	Table 13: Close Handler command
	4.4.3.2 The Close Handler response must conform to the format defined in Table 14.
	4.4.3.3 A response of “handler already closed” must be returned when a destination Handler receives a Close Handler command while already in closed status.
	4.4.3.4 A response of “Handler cannot be closed” must be returned when the physical device processing cannot be terminated. For example, the communication handler will return this response when the modem will not hang up.

	Table 14: Response to Close Handler command
	4.4.3.5 The Response Codes applicable to the Close Handler command are defined in Table 15.

	Table 15: Response Codes to Close Handler command
	4.4.4 Write Handler String
	4.4.4.1 The Write Handler String command must conform to the format defined in Table 16.
	4.4.4.2 If the destination address is for either a Display or a Printer device, the data string must be coded as indicated in the Code Table Index.
	4.4.4.3 PIN Pad requirement: If the Write Handler String command is sent to the User Interface Display Handler while the Secure Cryptographic Device (SCD) is in PIN Entry State, the command must include the Spmac. The SCD must authenticate the messag...
	4.4.4.4 SCD requirement: If the Data String in the Write Handler String command is enciphered, the SCD must decipher the Data String using the KSESDATA of the PSAM that initiated the command.
	4.4.4.5 All Display and Printer device Handlers must support the Common Character set defined in reference 6, EMV Book 4, Annex B.
	4.4.4.6 The Write Handler String response must conform to the format defined in Table 17.
	4.4.4.7 SCD requirement: If the Data String in the Write Handler String command is required to be enciphered, the SCD must encipher the Data String using the KSESDATA of the PSAM that initiated the command.
	4.4.4.8 If the Handler does not support this function, it must return a Response Code of Unsupported Operation.
	4.4.4.9 The Response Codes applicable to the Write Handler String command are listed in Table 18.

	4.4.5 Read Handler String
	4.4.5.1 The Read Handler String command must conform to the format defined in Table 19.
	4.4.5.2 The Read Handler String response must conform to the format defined in Table 20.
	4.4.5.3 If the responding Handler is a key-entry device, the Returned Data String must be coded using the character set specified in the Code Table Index. If the character set is not supported, the Handler must respond with the appropriate Response C...
	4.4.5.4 All key-entry device Handlers must support the Common Character set defined in reference 6, EMV Annex C.
	4.4.5.5 If the Handler does not support this function, it must return a Response Code of Unsupported Operation.
	4.4.5.6 The Response Codes applicable to the Read Handler String command are defined in Table 21.

	Note: The Response Codes defined in Table 21 are generic Response Codes and do not reflect handler-specific Response Codes (such as ‘No Connection for the communication handler’), nor proprietary Response Codes that may exist for specific operating e...
	4.4.6 Summary
	4.4.6.1 The common Handler commands are listed in Table 22. Any handler must support those with a Destination address marked “any”. The specified handlers must support those with specific addresses.

	5. The Multi-Application Driver Handler
	5.1 Application Selection
	5.2 Terminal Initialization
	5.2.1.1 The MAD-Handler must open any necessary Device Handlers through the issuance of multiple Open Handler commands. The MAD-Handler can determine the occupied sub-addresses, if any, by using the Get Handler Addresses command.
	5.2.1.2 All PSAMs must be reset by sending an ICC Power-On command to each occupied sub-address. In the response the MAD Handler receives the ATR and, if present, the Historical Bytes.
	5.2.1.3 The MAD Handler must issue the Start-up PSAM command to each application at each occupied PSAM sub-address.
	5.2.1.4 The MAD Handler must issue the Get Supported AIDs command to each application at each occupied PSAM sub-address.
	5.2.1.5 Prior to completing the configuration process, the MAD Handler may be required to send one or more application specific start-up commands to the PSAM. The format and content of these commands are outside the scope of this specification, and m...
	5.2.1.6 The terminal must successfully perform the initialization sequence prior to initiating any card transactions.

	5.3 Terminal Shutdown
	5.3.1.1 In order to ensure that the PSAM application is able to save all outstanding data, and be easily restarted, the terminal must send a PSAM Shut-down command to each PSAM application, and receive a response, prior to withdrawing power.

	5.4 Terminal Control
	5.5 Multi-Threading
	5.5.1.1 In order to support a multi-threading environment, the MAD Handler must assign a unique identifier (IDthread) to each currently active transaction, which must be used in all Terminal Messages relating to that transaction. The IDthread value m...

	5.6 Exception Handling

	Exception processing is specific to each TAPA application, i.e. IDPSAMAPP.
	6. The Card Handler
	The Card Handler is responsible for managing the interface to an integrated or peripheral card reading device. Currently defined card reading devices include the magnetic stripe reader, IC card reader, memory card reader and contactless card reader. E...
	6.1 Commands sent to the Magnetic Stripe Reader
	6.1.1 Read Magnetic Stripe

	The Read Magnetic Stripe command is used to read data from one or more ISO magnetic tracks. The command supports enciphered as well as clear text response.
	6.1.1.1 The Read Magnetic Stripe command must conform to the format defined in Table 23.

	The parameter track u is the hex value of the ISO identifier of the magnetic stripe track(s) to be read (as illustrated in Table 24). See reference 9, ISO/IEC 7813 for a description of the format of this data element. If the magnetic stripe track dat...
	For example:
	BYTES FROM CARD ==> BYTES DELIVERED TO APPLICATION
	STX ETX
	6.1.1.2 A response of “unsupported operation” must be returned if the reader does not support one or more of the requested tracks. If the requested tracks are supported by the reader, but are not present on the card swiped, then a response of “success...
	6.1.1.3 If an error occurs while reading one or more of the requested tracks, a Response Code of “transmission error” must be returned with the length field of the corresponding tracks in the returned message set to zero. In this case, the data of the...
	6.1.1.4 The Read Magnetic Stripe clear text response must conform to the format defined in Table 25.
	6.1.1.5 SCD requirement: The data of the track(s) must be enciphered using the KSESCDP of the PSAM that initiated the Read Magnetic Stripe command if the highest bit in u is set. The data shall be formatted as specified in Table 26.
	6.1.1.6 The Magnetic Stripe Reader must be capable of generating the Response Codes to the Read Magnetic Stripe command as defined in Table 27.
	6.1.2 Write Magnetic Stripe

	The Write Magnetic Stripe is an optional command used to write the entire track data to ISO track 3. (This command may be required by some proprietary applications).
	6.1.2.1 The Write Magnetic Stripe command must conform to the format defined in Table 28.
	6.1.2.2 Secure Cryptographic Device requirement: The data of the track must be deciphered using the KSEScdp of the PSAM that initiated the Read Magnetic Stripe command.

	For example:
	STX ETX
	6.1.2.3 The Write Magnetic Stripe response must conform to the format defined in Table 29.
	6.1.2.4 The Magnetic stripe Reader must be capable of generating the Response Codes to the Write Magnetic Stripe command as defined in Table 30.
	6.2 Commands sent to the Processor Card Reader

	Note that the Response Code contained in the response message only reflects whether the receiving handler was able to successfully process the ICC command, forward the C-APDU to the processor card, and receive a response. If a response is received fro...
	6.2.1 Message Handling

	Figure 5: Handler to Processor Card Interface
	6.2.1.1 If the interface to the Processor Card is T=0, the Get Response must be implemented as part of the Handler to deal with the requirements for case 2 and case 4 commands. (Please see reference 3, ISO/IEC 7816-4 and reference 6, EMV for further ...
	6.2.2 Enciphered Messages
	6.2.2.1 The Message Type must be used to show whether or not the command is partially (MT = ‘47’) and fully encrypted (MT = ‘48’) enciphered.
	6.2.2.2 The sub-handler address of the destination controls whether or not the response shall be encrypted. The setting of the most significant bit of the destination sub-handler address requests an enciphered response to be generated.

	6.2.3 ICC Command/Response

	The ICC command is used to send a command APDU to an IC card.
	6.2.3.1 An ICC command must conform to the format defined in Table 31.
	6.2.3.2 An ICC response must conform to the format defined in Table 32.
	6.2.3.3 SCD Requirement: The response data must be enciphered using the KSESCDP of the PSAM that initiated the ICC command.
	6.2.3.4 When constructing a response message to another Handler, the Processor Card Reader must use the source address and sub-address of the original request message as the destination address and sub-address of the response, set the Message Type to ...
	6.2.3.5 The Processor Card Reader must return the Response Code of “successful operation” if the Handler was able to deliver the C- APDU to the card successfully and receive a response.
	6.2.3.6 The Processor Card Reader must return the appropriate Response Code if it is unable to deliver the C-APDU to the IC card or does not get a response.
	6.2.3.7 The Response Codes applicable to the ICC command are defined in Table 33.
	6.2.4 ICC Power-On
	6.2.4.1 The ICC Power-On command must conform to the format defined in Table 34.
	6.2.4.2 The ICC Power-On response must conform to the format defined in Table 35.
	6.2.4.3 The Response Codes applicable to the ICC Power-On command are defined in Table 36.

	6.2.5 ICC Power-Off

	The ICC Power-Off command is used when a transaction involving an IC card has been completed. Use of this command may additionally result in the ejection of the IC card in terminals where this feature is warranted.
	6.2.5.1 The ICC Power-Off command must conform to the format defined in Table 37.
	6.2.5.2 The ICC Power-Off response must conform to the format defined in Table 38.
	6.2.5.3 The Response Codes applicable to the ICC Power-Off command are defined in Table 39.
	6.2.6 ICC Query

	The ICC Query command is issued to the Processor Card Reader in order to determine if a card is physically present in the IC reader.
	6.2.6.1 The ICC Query command must conform to the format defined in Table 40.
	6.2.6.2 The ICC Query response must conform to the format defined in Table 41.
	6.2.6.3 The Handler must return the appropriate Response Code if the ICC Query if no card is present.
	6.2.6.4 The Response Codes applicable to the ICC Query command are defined in Table 42.
	6.2.7 Verify Offline PIN
	6.2.7.1 The Verify Offline PIN enciphered command must conform to the format defined in Table 43.
	6.2.7.2 The Verify Offline PIN plaintext command must conform to the format defined in Table 44.
	6.2.7.3 The Verify Offline PIN plaintext response must conform to the format defined in Table 45.
	6.2.7.4 The Secure Cryptographic Device must verify the MACVOP in the command using the KSESmac, and decrypt the C-APDU using the KSESDATA.
	6.2.7.5 When constructing a response message to another Handler, the Processor Card Reader must use the source address and sub-address of the original request message as the destination address and sub-address of the response, set the Message Type to ...
	6.2.7.6 The Processor Card Reader must return the Response Code of “successful operation” if the Handler was able to deliver the C- APDU to the card successfully and receive a response.
	6.2.7.7 The Processor Card Reader must return the appropriate Response Code if it is unable to deliver the C-APDU to the IC card or does not get a response.
	6.2.7.8 In addition to the Response Codes defined for the ICC command (in Table 33), the Response Codes defined in Table 47 are applicable to the Verify Offline PIN Command.

	6.3 Commands sent to Memory Card Reader

	The interface to memory cards is proprietary and outside the scope of this specification. In addition to the common handler commands defined in Section 4.4, it is expected that the commands listed in Table 48 with a possible destination address of ‘02...
	6.4 Commands sent to the Contactless Card Reader

	The interface between the Contactless Card Reader and the ICC will use the protocol defined in Reference 4, EMV Contactless. The protocol is outside the scope of this specification.
	In addition to the common handler commands defined in Section 4.4, the commands listed in Table 48 with destination address of ‘0204’ will also be used for the contactless card reader.
	6.5 Summary

	7. The User Interface Handler
	The User Interface Handler is responsible for managing the interface to all user (customer) related equipment and peripherals, which may include the customer display, customer printer, PIN pad, and customer keypad.
	7.1 Messages sent to the User Interface Handler

	In addition to the common Handler commands provided in Section 4.4, the User Interface Handler must support the command set outlined in this section.
	7.1.1 Display Message
	7.1.1.1 The Display Message command must conform to the format defined in Table 49.
	7.1.1.2 PIN Pad requirement: If the Display Message command is sent to the User Interface Display Handler while the Secure Cryptographic Device (SCD) is in PIN Entry State, the command must include the Spmac. The SCD must authenticate the message usi...
	7.1.1.3 The receiving Handler must convert the 1-byte message code contained in the Display Message command into a predefined text as listed in Table 177. The terminal should use the defined message or the equivalent in the preferred language.

	Message Codes ‘01’ – ‘3F’ are defined in reference 6, EMV and are included in Table 177 only for completeness. In order to ensure compliance with EMV for use of that range, the terminal developer should reference the EMV specifications.
	7.1.1.4 The Display Message response must conform to the format defined in Table 50.
	7.1.1.5 The Response Codes applicable to the Display Message command are defined in Table 51
	7.1.2 Print Message
	7.1.2.1 The Print Message command must conform to the format defined in Table 52.
	7.1.2.2 The Print Message Code field must contain a 1-byte code as defined in Table 177, which the receiving Handler must interpret and convert to a predefined text message before being transferred to an attached printer.
	7.1.2.3 The Print Message response must conform to the format defined in Table 53.
	7.1.2.4 The Response Codes applicable to the Print Message command are defined in Table 54.

	7.1.3 Confirm Amount

	When the User Interface Handler receives this command, it must perform any necessary processing to display and confirm the transaction amount. The particular steps performed will be proprietary and environment dependent.
	7.1.3.1 The Confirm Amount command must conform to the format defined in Table 55.
	7.1.3.2 PIN Pad requirement: If the Confirm Amount command is sent to the User Interface Handler while the Secure Cryptographic Device (SCD) is in PIN Entry State, the command must include the Spmac. The SCD must authenticate the message using the KS...
	7.1.3.3 The Confirm Amount response must conform to the format defined in Table 56.
	7.1.3.4 PIN Pad requirement: If the Confirm Amount command is sent to the User Interface Handler while the Secure Cryptographic Device (SCD) is in PIN Entry State, the response must include the Spmac, R, generated by the SCD using the KSESmac of the P...
	7.1.3.5 The Response Codes applicable to the Confirm Amount command are defined in Table 57.
	7.1.4 Purge Print Buffer

	The Purge Print Buffer command is used to print and clear data that may be present in a print buffer.
	7.1.4.1 The Purge Print Buffer command must conform to the format defined in Table 58.
	7.1.4.2 The Purge Print Buffer response must conform to the format defined in Table 59.
	7.1.4.3 The Response Codes applicable to the Purge Print Buffer command are defined in Table 60.
	7.1.5 Get Amount

	The User Interface Handler may also be able to receive and process the Get Amount and Get Amount Enhanced messages, defined in sections 8.1.1 and 8.1.2.
	7.1.5.1 PIN Pad requirement: If a Get Amount command is sent to the User Interface Handler while the Secure Cryptographic Device (SCD) is in PIN Entry State, the command must include the Spmac. The SCD must authenticate the message using the KSESmac o...
	7.1.6 Funds Available

	The User Interface Handler may also be able to receive and process the Funds Available message, defined in section 8.1.4.
	7.2 PIN Pad Handler

	This section defines requirements for commands sent to the User Interface.
	All Secure Cryptographic Device's supporting PKC shall support the commands Get Key Check Value, Get Public Key Record and Verify PSAM Public Key Certificate (Submit Initial key).
	The terminal’s Secure Cryptographic Device - PIN Pad or separate Secure Cryptographic Device - needs to support these commands.
	7.2.1 Get Key Check Value
	7.2.1.1 The Get Key Check Value command must conform to the format defined in Table 61.
	7.2.1.2 The Secure Cryptographic Device/PIN Pad must verify that one of the public key version numbers (VKPca, pp) listed in the Get Key Check Value Command (to be used by the PSAM to verify the certificates) corresponds to the version number of the p...
	7.2.1.3 The Get Key Check Value response must conform to the format defined in Table 62.
	7.2.1.4 The Response Codes applicable to the Get Key Check Value command are defined in Table 63.
	7.2.1.5 To enable the synchronization process to continue if the Response code is 'FF80', the response to the Get Key Check Value command shall contain all data elements defined in Table 62.

	7.2.2 Get PIN Pad Public Key Record
	7.2.2.1 The Get PIN Pad Public Key Record command must conform to the format defined in Table 64.
	7.2.2.2 The Get PIN Pad public Key Record response must conform to the format defined in Table 65.
	7.2.2.3 The Response Codes applicable to the Get PIN Pad Public Key Record command are defined in Table 68.

	7.2.3 Verify PSAM Public Key Certificate
	7.2.3.1 The Verify PSAM Public Key Certificate command must conform to the format defined in Table 69.
	7.2.3.2 The Verify PSAM Public Key Certificate response must conform to the format defined in Table 70.
	7.2.3.3 The PIN Pad must return the appropriate Response Code if the Verify PSAM Public Key Certificate command has not been processed correctly.
	7.2.3.4 The Response Codes applicable to the Verify PSAM Public Key Certificate command are defined in Table 71.

	7.2.4 Submit Initial Key
	7.2.4.1 The Submit Initial Key command must conform to the format defined in Table 72.
	7.2.4.2 In order to generate the PS signature, the PSAM must perform the following steps.

	3. Split the digital signature into two components: a 96-byte DS1 and a remainder DSrem.
	4. Generate the DS2 by padding the DSrem with sufficient bytes of binary zeros to create a 96-byte string.
	7. The result (PS = PS1 || PS2) is sent to the PIN Pad in the Submit Initial Key command.
	7.2.4.3 The Submit Initial Key response must conform to the format defined in Table 73.
	7.2.4.4 In order to decrypt and verify the encrypted digital signature (PS) and recover the Initial Session Key (KSESinit), the PIN Pad must perform the following steps.

	7. If all the above checks are successful then KSESINIT is accepted and synchronization is complete.
	7.2.4.5 The Response Codes applicable to the Submit Initial Key command are defined in Table 74.
	7.2.5 Initiate PIN Entry
	7.2.5.1 The Initiate PIN Entry command must conform to the format defined in Table 77.
	7.2.5.2 The Initiate PIN Entry response must conform to the format defined in Table 78.
	7.2.5.3 Prior to generating or verifying the MACIPE in the Initiate PIN Entry command, the PSAM and the Secure Cryptographic Device must each derive a new set of PIN session keys from the previous set. A new Key Check Value (KCV) for the Transaction S...
	7.2.5.4 The Response Codes applicable to the Initiate PIN Entry command are defined in Table 81.

	7.2.6 Get PIN
	7.2.6.1 The Get PIN command must conform to the format defined in Table 82.
	7.2.6.1
	7.2.6.2
	7.2.6.3 The Get PIN response must conform with the format defined in Table 84.
	7.2.6.4 The PIN Pad must be capable of generating the Response Codes to the Get PIN command as defined in Table 85.
	7.2.6.5 The plaintext PIN block format to be enciphered must be formatted as shown in Figure 8 and as specified in reference 6, EMV (section 2.4.12).
	7.2.6.6 The Response Codes applicable to the Get PIN command are defined in Table 85.

	7.2.7 Terminate PIN Entry
	7.2.7.1 The Terminate PIN Entry command must conform to the format defined in Table 86.
	7.2.7.2 Table 87.
	7.2.7.3 The Response Codes applicable to the Terminate PIN Entry command are defined in Table 88.

	7.3 Summary

	8. The Merchant Application Handler
	8.1 Messages sent to the Merchant Application Handler

	This section provides a list of additional commands that should be accepted and processed by the Merchant Application Handler.
	The Get Amount commands consist of the basic Get Amount command and the Get Amount Enhanced command in which additional transaction specific data may be exchanged using the Discretionary Data field. The definition of the Discretionary Data may be diff...
	8.1.1 Get Amount
	8.1.1.1 The Get Amount command must conform to the format defined in Table 90.
	8.1.1.2 The Get Amount response must conform to the format defined in Table 91.
	8.1.1.3 If the currency code and exponent in the command were zeros, then the Merchant Application Handler must return the currency of the amount in the response.
	8.1.1.4 If the merchant application must display a message to the merchant or the user for amount entry, the Display Message Code indicates the message to be displayed.
	8.1.1.5 If the Merchant Application does not use a display to request an amount entry, and the command issued contained a Display Message Code, but the amount was still successfully entered, the Response Code ‘successfully processed’ must only be retu...
	8.1.1.6 If a display is used in the Get Amount process and the Merchant Application Handler does not recognize the Display Message Code, a Response Code ‘FF34’ must be returned. In this case the amount returned, if any, is not reliable.
	8.1.1.7 The Response Codes applicable to the Get Amount command are defined in Table 92.

	8.1.2 Get Amount Enhanced
	8.1.2.1 The Get Amount Enhanced command must conform to the format defined in Table 93.
	8.1.2.2 If the Destination Address is '0300', the MAC must be included.
	8.1.2.3 The requirements for the Get Amount command cover the Get Amount Enhanced command, too.
	8.1.2.4 The Get Amount Enhanced response must conform to the format defined in Table 94.
	8.1.2.5 The Response Codes applicable to the Get Amount Enhanced command are defined in Table 95.

	8.1.3 Transaction Completed

	The Transaction Completed command is issued to the Merchant Application Handler to inform it of the completion status of a specified transaction.
	8.1.3.1 The Transaction Completed command must conform to the format defined in Table 96.
	8.1.3.2 The Transaction Completed response must conform to the format defined in Table 97.
	8.1.3.3 The Response Codes applicable to the Transaction Completed command are defined in Table 98.
	8.1.4 Funds Available

	The Funds Available command may be used to inform the Merchant Application of the funds available to make a purchase.
	8.1.4.1 The Funds Available command must conform to the format defined in Table 99.
	8.1.4.2 The Funds Available response must conform to the format defined in Table 100.
	8.1.4.3 The Response Codes applicable to the Funds Available command are defined in Table 101.
	8.1.5 Display Message

	The Display handler must be able to receive and process the Display Message commands, which are defined in section 7.1.1.
	8.1.6 Print commands
	8.2 Summary

	9. The PSAM Handler
	 Provide generic (e.g. ISO/IEC DIS 7816-8) cryptography services.
	9.1 Message Handling

	2. The PSAM may be “multi-threaded”, handling several concurrent transactions (each with a different IDthread), each in a different state of completion.
	9.1.1 Messages sent to the PSAM Handler

	The next section describes how a Terminal Message which conveys an ICC command (Message Type = ‘42’), or a response from another device (Message Type = ‘FF’), is transformed to a Command APDU for the PSAM as defined in reference 3, ISO/IEC 7816-4.
	9.1.2 Messages sent to the PSAM

	Figure 9 illustrates the message translation that is performed by the PSAM Handler for commands sent to the PSAM.
	9.1.2.1 If present, the Lc must be coded on one byte. The Le must always be present and be coded on one byte with the value ‘00’.
	9.1.2.2 When the PSAM Handler receives an ICC command (Message Type ‘42’) it must forward the C-APDU contained within the message to the PSAM. The Source Address and IDTHREAD in the message must be retained in order to route correctly the subsequent r...
	9.1.2.3 When the PSAM Handler receives a response message (Message Type ‘FF’), it must construct a Response Command APDU as shown in Table 118 and send this command to the PSAM.
	9.1.2.4 If the LDATA field in a Response Message exceeds 248 bytes, the PSAM Handler must deliver the response in multiple response commands. In such a response command, the PSAM Handler must set the value of P2 equal to ‘01’. If P2 equals ‘01’, then ...
	9.1.2.5 The PSAM Handler must continue sending response commands with P2 = 01 until the remainder of the data to be sent does not exceed 248 bytes. The final response command of the series must use P2 = 00.
	9.1.2.6 If the PSAM Handler receives a command for a PSAM (Message Type ‘42’) and the C-APDU cannot be successfully forwarded to the PSAM, the PSAM Handler must reply to the originator of the command with the appropriate Response Code.
	9.1.3 Messages from the PSAM

	Figure 10: Message Translation for response from PSAM
	9.1.3.1 The PSAM must send all derived commands in the form of a Response APDU. The data portion must be in Terminal Message format, ready to be forwarded to the recipient. The source address must specify the sub-address assigned to the PSAM, the dest...
	9.1.3.2 The PSAM must send all response messages in the form of a Response APDU. The data portion must be in the Terminal Message format, but without the Response Code. The source address must specify the sub-address assigned to the PSAM, and the IDth...
	9.1.3.3 If the amount of data to send is greater than 252 bytes, the PSAM must deliver the data in multiple response APDUs. All but the last one have SW1SW1 = ‘9601’, indicating more data is to come. The last response APDU must have status bytes SW1SW...
	9.1.3.4 On receipt of an SW1SW2 = ‘9601’, the PSAM Handler must send a “Get Next” command, requesting further data. The Get Next command is detailed in Section 10.3.6.
	9.1.3.5 The PSAM Handler must concatenate the series of responses until all data is received or the Get Next command is rejected.
	9.1.3.6 When the PSAM Handler has received the complete response from the PSAM, the PSAM handler must forward the message to the assigned destination address.
	If the Message Type is different from ‘FF’, the PSAM Handler passes the message unaltered to the router.

	 the PSAM Handler must insert the two byte Response Code = ‘0000’.
	9.1.3.7 If the response from the PSAM does not contain a valid Terminal Message (that is, the associated Thread cannot be determined, and the destination is either not specified or cannot be derived) the PSAM Handler must not forward the message.

	10. PSAM Applications
	10.1 PSAM Initialization
	10.1.1.1 On reset, the PSAM will respond with the ATR, including the Historical Bytes, if any.
	10.1.1.2 In the response to the PSAM Startup command, the PSAM must include the PSAM Identification (RID + IDPSAMCREATOR + IDPSAM) and may include additional application specific data.
	10.1.1.3 The PSAM will respond to the Get Supported AIDs command with the list of AIDs supported by that application.

	10.2 PSAM Shut-down
	10.2.1.1 The PSAM must send a successful response, even if the particular PSAM implementation does not require any processing as a result of receiving this command.

	10.3 PSAM Commands and Responses

	This specification defines the use of commands with CLA byte ‘B0’. The INS ranges and their usage are defined in Table 105. Table 106 lists the application-independent commands that must be supported by the PSAM Manager.
	10.3.1 Message Formats

	 If an error was detected on transport layer, the PSAM may only respond with SW1SW2.
	10.3.2 Application Status Words

	Table 109 lists the Application Status Words that may be received from the PSAM application in a response to a command defined in this section.
	10.3.3 Start-up PSAM

	The Start-up PSAM command is issued by a MAD Handler application to exchange identification information about the PSAM application, and to allow the PSAM application to perform any necessary initialization
	10.3.3.1 The Start-up PSAM command must conform to the format defined in Table 110.
	10.3.3.2 The Start-up PSAM command response must conform to the format defined in Table 111.
	10.3.4 Get Supported AIDs

	The Get Supported AIDs command is issued by the MAD Handler to retrieve information about the supported AIDs for a specific PSAM application.
	10.3.4.1 The Get Supported AIDs command must conform to the format defined in Table 112.
	10.3.4.2 The Get Supported AIDs response must conform to the format defined in Table 113.
	10.3.5 PSAM Shutdown

	The PSAM Shutdown command is issued as an instruction to the PSAM application prior to withdrawing power from the PSAM.
	10.3.5.1 The PSAM Shutdown command must conform to the format defined in Table 114.
	10.3.5.2 The PSAM Shutdown response must conform to the format defined in Table 115.
	10.3.6 Get Next

	The Get Next command is issued by the PSAM Handler, after receiving a response from the PSAM with SW1SW2 = ‘9601’, in order to get the next incremental response from the PSAM.
	10.3.6.1 The Get Next command must conform to the format defined in Table 116.
	10.3.6.2 The Get Next response must conform to the format defined in Table 117.
	10.3.7 Response Command

	The PSAM Handler issues the Response command in order to send response data from another terminal device to the PSAM.
	10.3.7.1 The Response command must conform to the format defined in Table 118.
	10.3.7.2 If the P2 in the command is ‘01’, the PSAM must respond with an R-APDU consisting of only an SW1SW2 = ’90 00’. The PSAM Handler will then send another response command containing additional data to be concatenated to the data already received.

	When two or more response commands are “chained” as indicated by P2 = ‘01’, the PSAM must concatenate the data portion from each command, left to right, until the final command with P2 = ‘00’ is received. When all data have been received, the PSAM may...
	10.3.8 Synchronize PSAM - PIN Pad/Secure Cryptograhic Device

	The Synchronize PSAM/PIN Pad command is specific to the PIN Pad/Secure Cryptographic Device processing described in section 13.3, and is only used if the PSAM provides the application control. PSAM applications that do not support the PIN Pad/Secure C...
	10.3.8.1 The Synchronize PSAM/PIN Pad command must conform to the format defined in Table 119.
	10.3.8.2 The Synchronize PSAM/PIN Pad response must conform to the format defined in Table 120.
	10.3.8.3 The PSAM must return the appropriate Response Code if the Synchronize PSAM/PIN Pad command has not been processed correctly.

	11. The Data Store Handler
	11.1 General requirements
	11.2 Messages sent to the Data Store Handler

	This section provides a list of additional commands that should be accepted and processed by the Data Store Handler.
	11.2.1 File Management
	11.2.1.1 The Data Store Handler must provide file management services as requested by other terminal components (typically MAD-Handler and PSAM applications). Terminal components must be able to request the storage of both keyed and non-keyed records ...
	11.2.1.2 If a keyed file is created, then each record stored in that file must have a unique key.
	11.2.1.3 If a service is requested, it is fulfilled either entirely or not at all.

	11.2.2 Create File

	The Create File command is used to create one or more files within the terminal Data Store.
	11.2.2.1 The Create File command must conform to the format defined in Table 122.
	11.2.2.2 The Create File response must conform to the format defined in Table 123.
	11.2.2.3 If there is insufficient memory to successfully process the Create File command, the Data Store Handler must return a Response Code indicating “Insufficient resources”.
	11.2.2.4 The Response Codes applicable to the Create File command are defined in Table 124.
	11.2.3 Delete File

	The Delete File command is used to delete one or more files within the terminal Data Store. File deletion may be necessary to recover the memory they occupy and release the File Ids associated with them.
	11.2.3.1 The Delete File command must conform to the format defined in Table 125.
	11.2.3.2 The Delete File response must conform to the format defined in Table 126.
	11.2.3.3 The Response Codes applicable to the Delete File command are defined in Table 127.
	11.2.4 Add File Record

	The Add File Record command is used to add a record to an existing file within the terminal Data Store. Adding a record to a file means making an entry of the maximum file record + key size available.
	11.2.4.1 The Add File Record command must conform to the format defined in Table 128.
	11.2.4.2 The Data Store Handler must not reformat the file record data supplied in the DATA field.
	11.2.4.3 If LENrec = ‘0000’, the Data Store must reserve space for the maximum record size. However, the actual record length must be assigned as ‘0000’ until a subsequent Update is received with a defined size record.
	11.2.4.4 The Add File Record response must conform to the format defined in Table 129.
	11.2.4.5 If the Data Store Handler returns the Response Code of “successful operation”, the entire record must have been added to the file as requested.
	11.2.4.6 If there is insufficient memory to successfully process the Add File Record command, the Data Store Handler must return a Response Code indicating “Insufficient resources”.
	11.2.4.7 The Response Codes applicable to the Add File Record command are defined in Table 130.

	Note: the Data Store Handler may reject the Add File Record command for a keyed file if the search key already exists. It is up to the application adding the record to ensure uniqueness of the search key.
	11.2.5 Get File Record

	The Get File Record command is used to retrieve data based on the record pointer within a given file. This function is non-destructive. Note that '0000' is an invalid record pointer, which may be returned when there is no next or previous record. In t...
	11.2.5.1 The Get File Record command must conform to the format defined in Table 131.
	11.2.5.2 The Get File Record response must conform to the format defined in Table 132.
	11.2.5.3 The Response Codes applicable to the Get File Record command are defined in Table 133.
	11.2.6 Update File Record

	The Update File Record command is used to update an existing record with an amount of data that must not exceed the maximum indicated at file creation. The Update File Record command is destructive in that the previous content of the record is erased.
	11.2.6.1 The Update File Record command must conform to the format defined in Table 134.
	11.2.6.2 The Update File Record response must conform to the format defined in Table 135.
	11.2.6.3 If the Data Store Handler returns the Response Code of “successful operation”, the entire record, as specified in the Update command, must have been updated.
	11.2.6.4 If the Data Store Handler rejects the command, the addressed record must not have been modified.
	11.2.6.5 The Response Codes applicable to the Update File Record command are defined in Table 136.
	11.2.7 Find and Get File Record

	The Find and Get File Record command is used to locate and retrieve an existing record based on the associated key. This function is non-destructive to the file record.
	11.2.7.1 The Find and Get File Record command must conform to the format defined in Table 137.
	11.2.7.2 The Find and Get File Record response must conform to the format defined in Table 138.
	11.2.7.3 The Response Codes applicable to the Find and Get File Record command are defined in Table 139.
	11.2.8 Delete File Record

	The Delete File Record command is used to delete a record based on the record pointer for a given file. This function not only erases the data from the record but also frees the record space associate with it.
	11.2.8.1 The Delete File Record command must conform to the format defined in Table 140.
	11.2.8.2 The Delete File Record response must conform to the format defined in Table 141.
	11.2.8.3 The Response Codes applicable to the Delete File Record command are defined in Table 142.
	11.2.9 Find and Delete File Record

	The Find and Delete File Record command is used to locate and erase a record based on the search key from a given file. This function not only erases the data from the record but also frees the actual record space associated with it.
	11.2.9.1 The Find and Delete File Record command must conform to the format defined in Table 143.
	11.2.9.2 The Find and Delete File Record response must conform to the format defined in Table 144.
	11.2.9.3 The Response Codes applicable to the Find and Delete File Record command are defined in Table 145.
	11.2.10 Clear File

	The Clear File command is used to delete all records from a specified file. This function not only erases the data from the record but also frees the actual record space associated with it. However, the cleared file remains allocated to the previously...
	11.2.10.1 The Clear File command must conform to the format defined in Table 146.
	11.2.10.2 The Clear File response must conform to the format defined in Table 147.
	11.2.10.3 The Response Codes applicable to the Clear File command are defined in Table 148.
	11.3 Summary

	12. The Communication Handler
	12.1 Messages sent to the Communication Handler

	This section provides a list of additional commands that should be accepted and processed by the Communication Handler.
	12.1.1 Initiate Communication Session

	Following the session setup, data is exchanged using the Read Handler String and Write Handler String commands.
	12.1.1.1 The Initiate Communication command must conform to the format defined in Table 150. The coding of the Session Data field is proprietary to the terminal and outside the scope of this specification.
	12.1.1.2 The Initiate Communication Session response must conform to the format defined in Table 151.
	12.1.1.3 The Response Codes applicable to the Initiate Communication Session command are defined in Table 152.
	12.1.2 Terminate Communication Session

	The Terminate Communication Session command is used to discontinue a communication session with a host system.
	12.1.2.1 The Terminate Communication Session command must conform to the format defined in Table 153.
	12.1.2.2 The Terminate Communication Session response must conform to the format defined in Table 154.
	12.1.2.3 The Response Codes applicable to the Terminate Communication Session command are defined in Table 155.
	12.2 Summary

	13. Event Handler
	The Event Handler provides a mechanism for external events to be posted to the controlling application processes. Devices may post events to the Event queue by sending an Add Event Message to the Event Handler. Application processing code (either in t...
	13.1 Event Types

	The event type codes are defined in Table 157, with the addresses of the handlers where the events may have occurred.
	13.2 Event Handler Messages

	The Event Handler must be able to process the commands defined in this section.
	13.2.1 Add Event

	The Add Event message is used to post an event to the end of the event queue.
	13.2.1.1 An Add Event command must conform to the format defined in Table 158.
	13.2.1.2 The Add Event message may originate from a device handler that is not able to assign a valid Thread Identifier. To ensure that there is no collision with on-going threads being managed by the MAD-Handler, the Event Handler must not send a res...
	13.2.1.3 The Event Handler must retain the Event Type Code and Event Location in the Event Queue.
	13.2.2 Get Event

	The Get Event message is used to remove the oldest event from the event queue.
	13.2.2.1 A Get Event command must conform to the format defined in Table 159.
	13.2.2.2 A Get Event response must conform to the format defined in Table 160.
	13.2.2.3 The Event Handler must return the Response Code of “successful operation” if the Handler was able to successfully retrieve the oldest event from the event queue. The event must be removed from the queue as a result of a successful retrieval.
	13.2.2.4 The Event Handler must return the appropriate Response Code if it is unable to retrieve an event from the event queue. The event must not be removed from the queue if the retrieval was unsuccessful.
	13.2.2.5 The Response Codes applicable to the Get Event command are defined in Table 161.
	13.2.3 Find Event

	The Find Event message is used to find the first (or oldest) message of a particular type, or for a particular location, and remove it from the event queue.
	13.2.3.1 A Find Event command must conform to the format defined in Table 162.
	13.2.3.2 A Find Event response must conform to the format defined in Table 163.
	13.2.3.3 The Event Handler must return the Response Code of “successful operation” if the Handler was able to successfully find and retrieve an event from the queue. The event must be removed from the queue as a result of a successful retrieval.
	13.2.3.4 The Event Handler must return the appropriate Response Code if it is unable to find or retrieve an event from the event queue. No event must be removed from the queue if the retrieval was unsuccessful.
	13.2.3.5 The Response Codes applicable to the Find Event command are defined in Table 164.
	13.2.4 Flush Event Queue

	The Flush Event Queue is used remove all outstanding events from the event queue.
	13.2.4.1 A Flush Event Queue command must conform to the format defined in Table 165.
	13.2.4.2 A Flush Event Queue response must conform to the format defined Table 166.
	13.2.4.3 The Event Handler must return the Response Code of “successful operation” if the Handler was able to successfully flush all events from the queue.
	13.2.4.4 The Event Handler must return the appropriate Response Code if it is unable to empty the event queue. No event must be removed from the queue if the flush was unsuccessful.
	13.2.4.5 The Response Codes applicable to the Flush Event Queue command are defined in Table 167.
	13.3 Summary

	14. Secure Cryptographic Device Processing
	14.1 Overview
	14.2 PIN Pad processing

	 Multiple acquirers, responsible for different applications, may securely use the same PIN pad.
	14.2.1 Physical Environment
	14.2.1.1 The PIN Pad, with its keypad, must be contained within a Secure Cryptographic Device (SCD). The SCD may as well contain the Card Reader. The SCD must also contain User Interface Display. Each of these devices is addressed as specified in Tabl...
	14.2.1.2 The Card Reader shall if it is a stand-alone unit, be a Secure Cryptographic Device by itself. The Card Reader must transfer sensitive information to other devices in a secure way.

	14.2.2 Establishing the Secure Zone

	Figure 11: PIN Pad and PSAM Key Hierarchy
	14.2.3 Supported Configurations
	14.2.4 Implementation
	14.3 PIN Pad/PSAM Initialization
	14.3.1.1 The application must begin the synchronization process by sending the Get Key Check Value command to the PIN Pad. The response identifies the PIN Pad, and provides information about its current keys, including a check value (KCVpin) of the cu...
	14.3.1.2 The application must send the Get PIN Pad Public Key Record commands to the PIN Pad to retrieve the PIN Pad certificates. These certificates must be verified by the PSAM, and the PIN Pad’s public key recovered from them.
	14.3.1.3 The application must send PSAM certificates to the PIN Pad, using the Verify PSAM Public Key Certificate command. The PIN Pad must verify the PSAM’s certificates and recover the PSAM’s public key.
	14.3.1.4 The PSAM must generate an Initial Session Key, which must be sent to the PIN Pad by the application using the Submit Initial Key command. The Submit Initial Key command contains a public-key signature (PS), which must be generated by the PSA...
	14.3.1.5 If the application control is implemented in the PSAM, the MAD-Handler application must initiate the synchronization process by sending a Synchronize PIN Pad command to the PSAM application for each PIN Pad with which the PSAM must have a rel...

	14.4 PIN Processing
	14.4.1 Secure Cryptographic Device State
	14.4.1.1 The SCD must have two possible states: Default State and PIN Entry State.
	14.4.1.2 The SCD must be in Default State after terminal initialization.
	14.4.1.3 The SCD must be put into PIN Entry State after the PIN Pad has received and authenticated a valid Initiate PIN Entry command. The SCD must not transition to PIN Entry State under any other circumstances.
	14.4.1.4 The SCD must be returned to Default State when the PIN Pad receives a Terminate PIN Entry command. This command is not authenticated, and is not signed by the PSAM.
	14.4.1.5 When the SCD is in Default State:
	14.4.1.6 When the SCD is in PIN Entry State:

	 The Processor Card Reader may accept encrypted Card commands sent using the Verify Offline PIN Command message.
	14.4.2 PIN Entry
	14.4.2.1 The application must begin the process of PIN entry by sending The Initiate PIN Entry command to the PIN Pad. The PSAM must generate a new set of PIN Session Keys, and use the PIN MAC Session key (KSESmac) to sign the command.
	14.4.2.2 The application must send an authenticated Get PIN command to the PIN Pad in order to retrieve the PIN block. The PIN Pad will respond with the PIN Block encrypted under the current PIN Encryption Session Key (KSESpin). The PSAM must validate...
	14.4.2.3 During PIN entry, a symbol (for example, an asterisk character “*”) must be displayed at the user display instead of the PIN digit.
	14.4.2.4 Error handling procedures, e.g. deletion of incorrect entered PIN digits, must be handled internally by the Secure Cryptographic Device.

	14.5 PIN Verification

	3. Offline encrypted PIN verification, where the PIN sent to the card for verification encrypted under a key known to the card.
	14.5.1 Online PIN Verification

	If online PIN verification is to be performed, the application sends the PIN to the Acquirer encrypted in accordance with the method implemented by the Acquirer. This might for example use a PIN Encryption key established between the PSAM and Acquire...
	14.5.1.1 The application must retrieve the PIN encrypted under a key specified by the Acquirer. In order to accomplish this, the PSAM must decipher the PIN block using the PIN Encryption Session Key (KSESpin), and then re-encipher it as specified by t...
	14.5.2 Offline PIN Verification

	When offline PIN verification is to be performed, the application sends a command containing the PIN to the card. This command may contain a plaintext PIN, or may contain a PIN that has been encrypted under a key known to the card. (For example, the ...
	14.5.2.1 The PSAM must encrypt the PIN verification command APDU under the PIN session encryption key. The encrypted command must be sent to the Processor Card Reader using the Verify Offline PIN message. This message must be added a MAC using the PIN...

	The message is authenticated and the command APDU decrypted within the Secure Cryptographic Device. The C-APDU is then forwarded to the card.
	14.5.2.2 The response to the Verify Offline PIN message contains the card application’s response to the PIN verification command. The response message contains a MAC, which must be verified by the PSAM.

	Note that, as previously specified; offline PIN verification may only be performed while the SCD is in PIN Entry State.
	14.6 Security Requirements
	14.6.1 Business Entities
	14.6.1.1 The Primary Acquirer is the entity responsible for specifying, developing and maintaining the PIN Pads and (at least) one of the PSAMs (even if subcontracted to a third party). The Primary Acquirer may be the Certification Authority.
	14.6.1.2 The Certification Authority (CA) is responsible for certifying the Acquirers` PIN processing systems (including Host systems, PSAMs and PIN Pads).
	14.6.1.3 The certification of the Acquirer public keys must represent the approval by the CA of the Acquirer’s PSAM and Host-based PIN processors.
	14.6.1.4 The Card Schemes for which PIN processing is performed must approve the CA.
	14.6.1.5 If a Secondary Acquirer introduces a new application (and PSAM), which requires PIN entering, it is the responsibility of the CA to certify that the level of security provided by the Secondary Acquirer is sufficient.
	14.6.1.6 The Primary Acquirer may permit any number of (certified) Secondary Acquirer PSAMs to be installed in their terminal and thereby have access to the PIN Pad(s).
	14.6.1.7 The Primary Acquirer must know the identities of all the PSAMs in each of their terminals.
	14.6.1.8 The Primary Acquirer must know the identities of all the PIN Pads configured with each of their PSAMs.
	14.6.1.9 The IDppcreator and IDpp must uniquely identify the PIN Pad to the Acquirer. There is no requirement that the PIN Pad be globally identifiable.

	14.6.2 Physical Security Requirements
	The requirements for the physical security of a payment and PIN handing terminal are governed by the PCI SSC in ref. 11: e “PCI PIN Transaction Security, PTS”.
	Consequently, said requirements are out of scope for this specification.

	Figure 18: Secure Cryptographic Device
	14.6.3 Logical Security Requirements
	Also, the PCI SSC PTS requirements cover the logical security requirements.
	In addition to the PTS logical security requirements, a number of requirements related to this application architecture are defined below.
	14.6.3.1 The terminal and/or PSAM application must store the identities of each PSAM-PIN Pad configured pair. This must be available to the acquirer along with any other status information required by the acquirer.
	14.6.3.2 The PIN Pad private RSA key must remain protected within the confines of the tamper responsive PIN Pad. All cryptographic operations using this key must be performed within the tamper responsive PIN Pad.
	14.6.3.3 The PSAM private RSA key must remain protected within the PSAM. All cryptographic operations using this key must be performed within the PSAM.
	14.6.3.4 The set of PIN Session keys (including the KSES as well as the KSESpin and KSESmac, which are derived from it), must be protected within the Secure Cryptographic Device and PSAM. The Initial Session Key, exchanged during synchronization, may ...
	14.6.3.5 The set of PIN Session keys must only be used in the manner specified within this document; they must not be used for any other purposes.
	14.6.3.6 Only an authenticated Initiate PIN Entry command may cause the Secure Cryptographic Device to be put into PIN Entry state.
	14.6.3.7 When in PIN Entry State the Display may only show messages authenticated by the PSAM. Authenticated messages includes generic write string messages sent from the PSAM with a MAC, as well as messages referenced by “Message Codes”, which have b...
	14.6.3.8 When in PIN Entry State, any commands that require authentication must not be accepted by the Secure Cryptographic Device, i.e. the PIN pad if they do not contain a MAC from the PSAM that sent the Initiate PIN Entry command.

	14.6.4 Personalization Requirements
	14.6.4.1 After personalization and initial synchronization, the PIN Pad must contain the data elements defined in Table 169.
	14.6.4.2 After personalization and configuration the PSAM must contain the PIN related data elements defined in Table 170.
	14.6.4.3 The PIN Pad and PSAM must each be personalized with at least one key/certificate hierarchy chain and one CA public key. Depending on the acquirer’s requirements for the life span of the PIN Pad and PSAM and on the CA’s requirements for migrat...

	14.6.5 Minimum PSAM Requirements
	14.6.5.1 The following PIN Pad processing functions must be performed by the PSAM and not by the application within the terminal:

	 Encryption of any commands used for PIN verification being sent to the IC card.
	14.7 Cryptographic Requirements
	14.7.1 Verifying a Certificate - General Requirements
	14.7.1.1 Recovery of the certificate data must be performed using the process described in Annex F.2.1 of EMV 3.1.1.
	14.7.1.2 The recovery can only be performed if the length of the certificate is the same as the length of the modulus of the public key used in the verification. If the lengths are different, verification has failed.
	14.7.1.3 After recovering the recoverable certificate data, the header (first byte) and the trailer (last byte) must be checked. The header must be ‘6A’ (if there is an associated remainder field) or ‘4A’ (if there is no associated remainder field) an...
	14.7.1.4 If the public key algorithm indicator is not recognized then verification has failed.
	14.7.1.5 The hash value is a 20 byte field immediately preceding the trailer (last byte) of the recovered certificate data and must be verified according to the following procedure:
	14.7.1.6 The hash algorithm indicated in the certificate (SHA-1 is the only hash algorithm supported) must be applied to the concatenation, producing a 20-byte result. This result is compared to the hash value recovered from the certificate. If they a...

	14.7.2 Authentication of the PIN Pad Public Key
	14.7.2.1 The PSAM must verify that a version (VKPca, pp) of the CA public key used to create the PIN Pad Creator certificate (and so identified in the response to the Get Key Check Value command) matches a version number of a PKCA, PP in the PSAM. If...
	14.7.2.2 The PSAM issues Get PIN Pad public key record commands to obtain certificate records from the PIN Pad. The PSAM must verify the certificates in sequence:
	14.7.2.3 The general checks in Section 14.7.1 must be performed. If any of these fail then PIN Pad public key authentication has failed.
	14.7.2.4 The PSAM must also check that:

	If any these checks fail, then the PIN Pad public key has failed authentication.
	14.7.3 Authentication of the PSAM Public Key
	14.7.3.1 After receiving and validating the response to the Get Key Check Value command (with KCVs not identical), the PSAM must verify that a version of the CA public key (VKPCA,PSAM) in the response to the Get Key Check Value command matches a CA pu...
	14.7.3.2 The PSAM must send and the PIN Pad must verify certificates in sequence:
	14.7.3.3 The general checks in Section 14.7.1 must be performed. If any of these fail then PSAM public key authentication has failed.
	14.7.3.4 The PIN Pad must also check that

	If any these checks fail, then the PSAM public key has failed authentication.
	14.7.4 DES and Triple DES

	Note that for general encryption the padding and blocking process in Section 14.7.5 should be adhered to.
	14.7.5 Encryption and Decryption
	14.7.5.1 To encrypt any message, MSG, it must first be padded to the right with ‘80’ and then with as many ‘00’ bytes as necessary (possibly zero) until it is a multiple of 8 bytes:

	X : = MSG||'80'||'00'||…||'00';
	14.7.5.2 X is then divided into 8-byte blocks X1, X2, .., Xk and processed using Triple DES in Cipher Block Chaining mode:

	Yi = DES3(K1,K2)[Xi (Yi-1] for i = 1 to k
	14.7.5.3 The encrypted message is

	Note that this process always involves message padding so that when the message is an eight-byte PIN block the ciphertext will be 16-bytes long.
	14.7.5.4 In order to decrypt a ciphertext message the encryption processed is merely reversed as shown below.

	6. If all the preceding steps are successful then Dec(K1,K2)[Y] := MSG
	14.7.6 MAC computation

	The MAC computation is denoted by MAC(K1, K2)[D]. The computation conforms to ISO/IEC 9797-1:1999 Mechanism 3, using padding method 2 and DES as the block cipher. This is also described in EMV annex E1.2.
	14.7.6.1 Input D to the MAC is first padded to the right with ‘80’. The result is then padded to the right with enough bytes of ‘00’ (possibly none) to make the result a multiple of 8 bytes long.

	X: = MSG||'80'||'00'||…||'00';
	14.7.6.2 X is then divided into 8-byte blocks X1, X2, .., Xk and processed using Single DES in Cipher Block Chaining mode:

	Yi = DES(K1)[Xi (Yi-1] for i = 1 to k
	14.7.6.3 Finally the 8-byte MAC is computed as

	MAC(K1,K2)[D] := DES(K1)[DES-1(K2)[Yk]]
	14.7.7 RSA Operations
	14.7.7.1 All RSA operations must be performed as described in reference 6, EMV, annexes E and F.

	The RSA decipher function corresponds to the Sign function defined in reference 6, EMV, Annex F.
	14.7.8 RSA Padding
	14.7.8.1 The process of RSA padding of data D of length 96 bytes (768 bits) to a length L bytes (where L (113) is as defined below.

	PAD(D) := (|| (D (G(r)) || (r (SHA (D (G(r), 16))
	14.7.8.2 D is recovered from PAD(D) as follows:

	5. D is the rightmost 96 bytes of ((G(R)
	14.7.9 Certificate Formats
	14.7.9.1 The Acquirer Certificate must have the format defined in Table 171.
	14.7.9.2 The PSAM Certificate must have the format defined in Table 172.
	14.7.9.3 The PIN Pad Creator certificate must have the format defined in Table 173.
	14.7.9.4 The PSAM Certificate must have the format defined in Table 174.

	14.7.10 Expiration of Certificates
	14.7.10.1 A certificate ceases to be valid after its Certificate Expiration Date. Acquirers must ensure that CA public keys are no longer used after their expiry date as dictated by the CA.

	14.7.11 Replacement of Keys and Certificates
	14.7.11.1 It must not be possible to change the PSAM and PIN Pad private keys (and associated public key certificates) after personalization.

	Note that this may impact the minimum length of the PIN PAD Creator Public Key and the PIN Pad Public Key chosen.
	14.7.12 Revocation of Certificates

	The revocation of certificates is not described by this specification. If the acquirer’s implementation permits certificate replacement, then that process may be used to replace revoked certificates.
	14.7.13 Key Lengths
	14.7.13.1 The minimum and maximum length of the public key modulus (LPKM) must be according to Table 175.
	14.7.13.2 The key length (in bits) of the RSA moduli must always be an integer multiple of 16.

	14.8 PIN Pad-less Secure Cryptographic Device
	14.9 Response Codes
	14.10 Message Codes

	This section contains a list of Message codes that can be used to send pre-defined text messages to displays or to printers.
	15. Data Elements
	15.1.1 AIDN
	15.1.2 ALG
	15.1.3 ALGH
	15.1.4 Amount Confirmed Indicator
	15.1.5 Application Status Words (ASW1, ASW2)
	15.1.6 ATR (Answer To Reset)
	15.1.7 [C-APDU]
	15.1.8 Card Command
	15.1.9 Card Response
	15.1.10 CHALLENGE
	15.1.11 CLA (Class byte)
	15.1.12 CNTAID
	15.1.13 CNTSUBADDRESS
	15.1.14 Code Table Index
	15.1.15 CSN (Certificate Serial Number)
	15.1.16 CURR (Currency)
	15.1.17 CURRC (Currency Code)
	15.1.18 CURRE (Currency Exponent)
	15.1.19 Destination Address (DAD)
	15.1.20 DS (Digital Signature)
	15.1.21 DTHRPDA (Transaction date and time)
	15.1.22 Enc(KSESPIN)[PIN]
	15.1.23 Error Response Data
	15.1.24 Event Type Code
	15.1.25 Event Location
	15.1.26 File Identifier (IDFILE)
	15.1.27 Filler
	15.1.28 Format Code
	15.1.29 Handler Category Address
	15.1.30 Handler Sub-Address
	15.1.31 Historical Bytes
	15.1.32 IDPP (PIN Pad ID)
	15.1.33 IDPPCREATOR (Identifier for the Creator of a PIN Pad)
	15.1.34 IDPSAM (Identifier for a PSAM)
	15.1.35 IDPSAMAPP (TAPA PSAM Application Identifier)
	15.1.36 IDPSAMCREATOR (Identifier for the Creator of the PSAM)
	15.1.37 IDSCHEME (Acquirer reference number)
	15.1.38 INS (Instruction byte)
	15.1.39 KCV (Key Check Value)
	15.1.40 KEKCDP
	15.1.41 Key Data
	15.1.42 KEYCDP
	15.1.43 KSES
	15.1.44 KSESCDP
	15.1.45 KSESINIT
	15.1.46 KSESMAC
	15.1.47 KSESPIN
	15.1.48 Lc (Data length)
	15.1.49 Le (Expected data length)
	15.1.50 LDATA (Data field length)
	15.1.51 LEN
	15.1.52 LENAID,N
	15.1.53 LENREC
	15.1.54 LENSKEY
	15.1.55 Length
	15.1.56 LPKE (Length of a Public Key Exponent)
	15.1.57 LPKM (Length of Public Key Modulus)
	15.1.58 MAC
	15.1.59 Magnetic Stripe Data
	15.1.60 Message Code
	15.1.61 Message Data
	15.1.62 Message Type
	15.1.63 NUMFILE
	15.1.64 Pad Pattern
	15.1.65 PK (Public Key)
	15.1.66 PKC (Public Key Certificate)
	15.1.67 PKM (Public Key Modulus)
	15.1.68 PKR (Public Key Remainder)
	15.1.69 P1, P2 (Parameter bytes)
	15.1.70 Pointer Orientation
	15.1.71 Message Code
	15.1.72 PIN Pad Identifier
	15.1.73 PS
	15.1.74 PSAM Identifier
	15.1.75 PSAM sub-address
	15.1.76 Record Data
	15.1.77 Record Pointer
	15.1.78 Record Tag
	15.1.79 Response Code (RC)
	15.1.80 Response Data
	15.1.81 Returned String
	15.1.82 RIDPSAM (Registered Identifier Of The Entity Assigning PSAM Creator Ids)
	15.1.83 Search Type
	15.1.84 Session Data
	15.1.85 SK (Private Key)
	15.1.86 Source Address (SAD)
	15.1.87 Status Words (SW1, SW2)
	15.1.88 IDTHREAD (Thread Identifier)
	15.1.89 Time
	15.1.90 Timer Flag
	15.1.91 Track Data
	15.1.92 Transaction Amount
	15.1.93 Transaction Results
	15.1.94 u
	15.1.95 VKPCA, xx

	16. Acronyms

