
Copyright © 2013 Nets Denmark A/S
All rights reserved.

Terminal Architecture for PSAM Applications
(TAPA)

Application Architecture Specification

Version 3.0

October 2013

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

i

TABLE OF CONTENTS
1. REVISION LOG ... 1

2. DOCUMENT OVERVIEW ... 4

2.1 PURPOSE .. 4
2.2 INTENDED AUDIENCE .. 4
2.3 INCLUDED IN THIS DOCUMENT .. 4
2.4 NOT INCLUDED IN THIS DOCUMENT .. 4
2.5 REFERENCE INFORMATION ... 5

2.5.1 Requirement Numbering .. 5
2.5.2 References ... 5
2.5.3 Command and Response Format Conventions ... 6
2.5.4 Notational Conventions .. 7

2.6 DOCUMENT ORGANIZATION .. 7

3. ARCHITECTURAL OVERVIEW ... 9

3.1 INTRODUCTION ... 9
3.2 GENERAL REQUIREMENTS .. 9
3.3 TERMINAL APPLICATION ARCHITECTURE .. 9

4. FUNCTIONAL REQUIREMENTS ... 11

4.1 THE ROUTER .. 11
4.1.1 Functional Requirements ... 12
4.1.2 Error Handling .. 12

4.2 THE HANDLERS ... 12
4.2.1 Device Handlers .. 13
4.2.2 Multi-Application Driver Handler .. 13
4.2.3 Event Handler ... 13
4.2.4 General Characteristics .. 14
4.2.5 Functional Requirements ... 16

4.3 MESSAGE HANDLING .. 17
4.3.1 Time-out Management ... 22
4.3.2 Exception Handling ... 23

4.4 HANDLER-INDEPENDENT MESSAGES ... 23
4.4.1 Get Handler Addresses .. 23
4.4.2 Open Handler .. 25
4.4.3 Close Handler .. 26
4.4.4 Write Handler String .. 28

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

ii

4.4.5 Read Handler String ... 31
4.4.6 Summary ... 33

5. THE MULTI-APPLICATION DRIVER HANDLER .. 35

5.1 APPLICATION SELECTION .. 35
5.2 TERMINAL INITIALIZATION ... 35
5.3 TERMINAL SHUTDOWN ... 37
5.4 TERMINAL CONTROL .. 37
5.5 MULTI-THREADING .. 38
5.6 EXCEPTION HANDLING ... 38

6. THE CARD HANDLER.. 40

6.1 COMMANDS SENT TO THE MAGNETIC STRIPE READER ... 40
6.1.1 Read Magnetic Stripe .. 40
6.1.2 Write Magnetic Stripe... 44

6.2 COMMANDS SENT TO THE PROCESSOR CARD READER .. 47
6.2.1 Message Handling ... 48
6.2.2 Enciphered Messages .. 48
6.2.3 ICC Command/Response ... 49
6.2.4 ICC Power-On .. 52
6.2.5 ICC Power-Off .. 54
6.2.6 ICC Query ... 55
6.2.7 Verify Offline PIN .. 57

6.3 COMMANDS SENT TO MEMORY CARD READER .. 61
6.4 COMMANDS SENT TO THE CONTACTLESS CARD READER ... 61
6.5 SUMMARY .. 62

7. THE USER INTERFACE HANDLER .. 63

7.1 MESSAGES SENT TO THE USER INTERFACE HANDLER ... 63
7.1.1 Display Message .. 63
7.1.2 Print Message .. 65
7.1.3 Confirm Amount .. 67
7.1.4 Purge Print Buffer ... 69
7.1.5 Get Amount ... 71
7.1.6 Funds Available ... 71

7.2 PIN PAD HANDLER .. 71
7.2.1 Get Key Check Value .. 72
7.2.2 Get PIN Pad Public Key Record ... 74
7.2.3 Verify PSAM Public Key Certificate ... 76

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

iii

7.2.4 Submit Initial Key ... 79
7.2.5 Initiate PIN Entry .. 84
7.2.6 Get PIN .. 87
7.2.7 Terminate PIN Entry ... 90

7.3 SUMMARY .. 92

8. THE MERCHANT APPLICATION HANDLER .. 94

8.1 MESSAGES SENT TO THE MERCHANT APPLICATION HANDLER .. 94
8.1.1 Get Amount ... 94
8.1.2 Get Amount Enhanced .. 97
8.1.3 Transaction Completed ... 99
8.1.4 Funds Available ... 101
8.1.5 Display Message .. 102
8.1.6 Print commands .. 102

8.2 SUMMARY .. 103

9. THE PSAM HANDLER ... 104

9.1 MESSAGE HANDLING .. 104
9.1.1 Messages sent to the PSAM Handler ... 105
9.1.2 Messages sent to the PSAM ... 105
9.1.3 Messages from the PSAM .. 107

10. PSAM APPLICATIONS ... 111

10.1 PSAM INITIALIZATION .. 111
10.2 PSAM SHUT-DOWN .. 112
10.3 PSAM COMMANDS AND RESPONSES ... 112

10.3.1 Message Formats.. 113
10.3.2 Application Status Words .. 115
10.3.3 Start-up PSAM .. 116
10.3.4 Get Supported AIDs .. 117
10.3.5 PSAM Shutdown ... 119
10.3.6 Get Next .. 120
10.3.7 Response Command ... 121
10.3.8 Synchronize PSAM - PIN Pad/Secure Cryptograhic Device .. 122

11. THE DATA STORE HANDLER .. 125

11.1 GENERAL REQUIREMENTS .. 125
11.2 MESSAGES SENT TO THE DATA STORE HANDLER .. 125

11.2.1 File Management.. 125

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

iv

11.2.2 Create File .. 125
11.2.3 Delete File ... 127
11.2.4 Add File Record .. 129
11.2.5 Get File Record ... 132
11.2.6 Update File Record ... 134
11.2.7 Find and Get File Record .. 137
11.2.8 Delete File Record .. 139
11.2.9 Find and Delete File Record ... 141
11.2.10 Clear File ... 143

11.3 SUMMARY ... 145

12. THE COMMUNICATION HANDLER ... 146

12.1 MESSAGES SENT TO THE COMMUNICATION HANDLER ... 146
12.1.1 Initiate Communication Session .. 146
12.1.2 Terminate Communication Session ... 148

12.2 SUMMARY ... 150

13. EVENT HANDLER .. 151

13.1 EVENT TYPES .. 151
13.2 EVENT HANDLER MESSAGES .. 151

13.2.1 Add Event ... 152
13.2.2 Get Event .. 152
13.2.3 Find Event ... 154
13.2.4 Flush Event Queue .. 156

13.3 SUMMARY ... 158

14. SECURE CRYPTOGRAPHIC DEVICE PROCESSING .. 159

14.1 OVERVIEW .. 159
14.2 PIN PAD PROCESSING .. 159

14.2.1 Physical Environment .. 159
14.2.2 Establishing the Secure Zone ... 160
14.2.3 Supported Configurations .. 161
14.2.4 Implementation .. 162

14.3 PIN PAD/PSAM INITIALIZATION ... 162
14.4 PIN PROCESSING ... 164

14.4.1 Secure Cryptographic Device State ... 164
14.4.2 PIN Entry .. 166

14.5 PIN VERIFICATION .. 170
14.5.1 Online PIN Verification .. 170

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

v

14.5.2 Offline PIN Verification .. 171
14.6 SECURITY REQUIREMENTS ... 172

14.6.1 Business Entities ... 172
14.6.2 Physical Security Requirements ... 173
14.6.3 Logical Security Requirements .. 173
14.6.4 Personalization Requirements ... 174
14.6.5 Minimum PSAM Requirements .. 176

14.7 CRYPTOGRAPHIC REQUIREMENTS ... 177
14.7.1 Verifying a Certificate - General Requirements ... 177
14.7.2 Authentication of the PIN Pad Public Key ... 178
14.7.3 Authentication of the PSAM Public Key ... 180
14.7.4 DES and Triple DES .. 181
14.7.5 Encryption and Decryption .. 182
14.7.6 MAC computation ... 183
14.7.7 RSA Operations ... 183
14.7.8 RSA Padding ... 183
14.7.9 Certificate Formats .. 184
14.7.10 Expiration of Certificates ... 188
14.7.11 Replacement of Keys and Certificates .. 188
14.7.12 Revocation of Certificates .. 188
14.7.13 Key Lengths .. 189

14.8 PIN PAD-LESS SECURE CRYPTOGRAPHIC DEVICE ... 189
14.9 RESPONSE CODES .. 190
14.10 MESSAGE CODES ... 196

15. DATA ELEMENTS ... 202

15.1.1 AIDN .. 202
15.1.2 ALG.. 202
15.1.3 ALGH ... 203
15.1.4 Amount Confirmed Indicator ... 203
15.1.5 Application Status Words (ASW1, ASW2) ... 204
15.1.6 ATR (Answer To Reset) .. 204
15.1.7 [C-APDU]... 204
15.1.8 Card Command ... 204
15.1.9 Card Response .. 204
15.1.10 CHALLENGE ... 205
15.1.11 CLA (Class byte) .. 205
15.1.12 CNTAID ... 205

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

vi

15.1.13 CNTSUBADDRESS .. 205
15.1.14 Code Table Index .. 206
15.1.15 CSN (Certificate Serial Number) .. 206
15.1.16 CURR (Currency) .. 206
15.1.17 CURRC (Currency Code) ... 206
15.1.18 CURRE (Currency Exponent) ... 206
15.1.19 Destination Address (DAD) .. 207
15.1.20 DS (Digital Signature) .. 207
15.1.21 DTHRPDA (Transaction date and time) .. 207
15.1.22 Enc(KSESPIN)[PIN] .. 207
15.1.23 Error Response Data .. 207
15.1.24 Event Type Code ... 208
15.1.25 Event Location.. 208
15.1.26 File Identifier (IDFILE) .. 208
15.1.27 Filler.. 208
15.1.28 Format Code ... 208
15.1.29 Handler Category Address ... 209
15.1.30 Handler Sub-Address .. 209
15.1.31 Historical Bytes .. 209
15.1.32 IDPP (PIN Pad ID) .. 209
15.1.33 IDPPCREATOR (Identifier for the Creator of a PIN Pad) ... 210
15.1.34 IDPSAM (Identifier for a PSAM) .. 210
15.1.35 IDPSAMAPP (TAPA PSAM Application Identifier) .. 210
15.1.36 IDPSAMCREATOR (Identifier for the Creator of the PSAM) .. 210
15.1.37 IDSCHEME (Acquirer reference number) ... 211
15.1.38 INS (Instruction byte) .. 211
15.1.39 KCV (Key Check Value) ... 211
15.1.40 KEKCDP ... 211
15.1.41 Key Data ... 211
15.1.42 KEYCDP ... 212
15.1.43 KSES .. 212
15.1.44 KSESCDP ... 212
15.1.45 KSESINIT ... 212
15.1.46 KSESMAC ... 212
15.1.47 KSESPIN .. 213
15.1.48 Lc (Data length) .. 213
15.1.49 Le (Expected data length) .. 213
15.1.50 LDATA (Data field length) ... 213

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

vii

15.1.51 LEN ... 213
15.1.52 LENAID,N ... 214
15.1.53 LENREC ... 214
15.1.54 LENSKEY .. 214
15.1.55 Length ... 214
15.1.56 LPKE (Length of a Public Key Exponent) .. 214
15.1.57 LPKM (Length of Public Key Modulus) .. 215
15.1.58 MAC ... 215
15.1.59 Magnetic Stripe Data ... 215
15.1.60 Message Code ... 215
15.1.61 Message Data ... 215
15.1.62 Message Type ... 216
15.1.63 NUMFILE .. 216
15.1.64 Pad Pattern .. 216
15.1.65 PK (Public Key) ... 216
15.1.66 PKC (Public Key Certificate) .. 216
15.1.67 PKM (Public Key Modulus) ... 217
15.1.68 PKR (Public Key Remainder) ... 217
15.1.69 P1, P2 (Parameter bytes) ... 217
15.1.70 Pointer Orientation .. 217
15.1.71 Message Code ... 217
15.1.72 PIN Pad Identifier ... 218
15.1.73 PS .. 218
15.1.74 PSAM Identifier .. 218
15.1.75 PSAM sub-address .. 218
15.1.76 Record Data .. 218
15.1.77 Record Pointer .. 218
15.1.78 Record Tag ... 219
15.1.79 Response Code (RC) .. 219
15.1.80 Response Data .. 219
15.1.81 Returned String .. 219
15.1.82 RIDPSAM (Registered Identifier Of The Entity Assigning PSAM Creator Ids) 219
15.1.83 Search Type .. 220
15.1.84 Session Data ... 220
15.1.85 SK (Private Key) ... 220
15.1.86 Source Address (SAD) ... 220
15.1.87 Status Words (SW1, SW2) .. 221
15.1.88 IDTHREAD (Thread Identifier) ... 221

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

viii

15.1.89 Time .. 221
15.1.90 Timer Flag .. 221
15.1.91 Track Data .. 221
15.1.92 Transaction Amount .. 222
15.1.93 Transaction Results .. 222
15.1.94 u .. 222
15.1.95 VKPCA, xx ... 222

16. ACRONYMS ... 223

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

ix

LIST OF TABLES

TABLE 1: ROUTER RESPONSE CODES .. 12
TABLE 2: HANDLER ADDRESS ASSIGNMENTS .. 14
TABLE 3: TERMINAL MESSAGE FORMAT.. 17
TABLE 4: TERMINAL MESSAGES, HANDLERS 0-2 .. 19
TABLE 5: TERMINAL MESSAGES, HANDLERS 3-5 .. 20
TABLE 6: TERMINAL MESSAGES, HANDLER 6-7 .. 21
TABLE 7: GET HANDLER ADDRESSES COMMAND ... 23
TABLE 8: RESPONSE TO GET HANDLER ADDRESSES COMMAND .. 24
TABLE 9: RESPONSE CODES TO GET HANDLER ADDRESSES COMMAND .. 24
TABLE 10: OPEN HANDLER COMMAND ... 25
TABLE 11: RESPONSE TO OPEN HANDLER COMMAND .. 26
TABLE 12: RESPONSE CODES TO OPEN HANDLER COMMAND .. 26
TABLE 13: CLOSE HANDLER COMMAND .. 27
TABLE 14: RESPONSE TO CLOSE HANDLER COMMAND ... 27
TABLE 15: RESPONSE CODES TO CLOSE HANDLER COMMAND ... 28
TABLE 16: WRITE HANDLER STRING COMMAND ... 29
TABLE 17: RESPONSE TO WRITE HANDLER STRING COMMAND .. 30
TABLE 18: RESPONSE CODES TO WRITE HANDLER STRING COMMAND .. 30
TABLE 19: READ HANDLER STRING COMMAND .. 31
TABLE 20: RESPONSE TO READ HANDLER STRING COMMAND ... 32
TABLE 21: RESPONSE CODES TO READ HANDLER STRING COMMAND ... 33
TABLE 22: HANDLER-INDEPENDENT COMMANDS .. 34
TABLE 23: READ MAGNETIC STRIPE COMMAND ... 40
TABLE 24: TRACK ASSIGNMENT .. 41
TABLE 25: CLEAR TEXT RESPONSE TO READ MAGNETIC STRIPE COMMAND .. 43
TABLE 26: ENCIPHERED RESPONSE TO READ MAGNETIC STRIPE COMMAND ... 43
TABLE 27: RESPONSE CODES TO READ MAGNETIC STRIPE COMMAND .. 44
TABLE 28: WRITE MAGNETIC STRIPE COMMAND .. 45
TABLE 29: RESPONSE TO WRITE MAGNETIC STRIPE COMMAND... 46
TABLE 30: RESPONSE CODES TO WRITE MAGNETIC STRIPE COMMAND ... 47
TABLE 31: ICC COMMAND ... 50
TABLE 32: RESPONSE TO ICC COMMAND .. 51
TABLE 33: RESPONSE CODES TO ICC COMMAND .. 51
TABLE 34: ICC POWER-ON COMMAND .. 52
TABLE 35: RESPONSE TO ICC POWER-ON COMMAND ... 53

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

x

TABLE 36: RESPONSE CODES TO ICC POWER-ON COMMAND ... 53
TABLE 37: ICC POWER-OFF COMMAND ... 54
TABLE 38: RESPONSE TO ICC POWER-OFF COMMAND .. 54
TABLE 39: RESPONSE CODES TO ICC POWER-OFF COMMAND .. 55
TABLE 40: ICC QUERY COMMAND ... 56
TABLE 41: RESPONSE TO ICC QUERY COMMAND .. 56
TABLE 42: RESPONSE CODES TO ICC QUERY COMMAND .. 57
TABLE 43: VERIFY OFFLINE PIN ENCIPHERED, COMMAND .. 58
TABLE 44: VERIFY OFFLINE PIN PLAINTEXT, COMMAND ... 58
TABLE 45: PLAINTEXT RESPONSE TO VERIFY OFFLINE PIN COMMAND ... 60
TABLE 46: ENCIPHERED RESPONSE TO VERIFY OFFLINE PIN COMMAND .. 60
TABLE 47: RESPONSE CODES TO VERIFY OFFLINE PIN COMMAND.. 61
TABLE 48: CARD HANDLER COMMANDS ... 62
TABLE 49: DISPLAY MESSAGE COMMAND ... 63
TABLE 50: RESPONSE TO DISPLAY MESSAGE COMMAND .. 64
TABLE 51: RESPONSE CODES TO DISPLAY MESSAGE COMMAND .. 65
TABLE 52: PRINT MESSAGE COMMAND .. 66
TABLE 53: RESPONSE TO PRINT MESSAGE COMMAND ... 66
TABLE 54: RESPONSE CODES TO PRINT MESSAGE COMMAND ... 66
TABLE 55: CONFIRM AMOUNT COMMAND .. 68
TABLE 56: RESPONSE TO CONFIRM AMOUNT COMMAND ... 68
TABLE 57: RESPONSE CODES TO CONFIRM AMOUNT COMMAND ... 69
TABLE 58: PURGE PRINT BUFFER COMMAND ... 70
TABLE 59: RESPONSE TO PURGE PRINT BUFFER COMMAND .. 70
TABLE 60: RESPONSE CODES TO PURGE PRINT BUFFER COMMAND .. 70
TABLE 61: GET KEY CHECK VALUE COMMAND ... 72
TABLE 62: RESPONSE TO GET KEY CHECK VALUE COMMAND .. 73
TABLE 63: RESPONSE CODES TO GET KEY CHECK VALUE COMMAND .. 74
TABLE 64: GET PIN PAD PUBLIC KEY RECORD COMMAND ... 74
TABLE 65: RESPONSE TO GET PIN PAD PUBLIC KEY RECORD COMMAND .. 75
TABLE 66: CONTENTS OF PIN PAD CREATOR CERTIFICATE RECORD .. 75
TABLE 67: CONTENTS OF PIN PAD CERTIFICATE RECORD ... 76
TABLE 68: RESPONSE CODES TO GET PIN PAD PUBLIC KEY RECORD COMMAND... 76
TABLE 69: VERIFY PSAM PUBLIC KEY CERTIFICATE COMMAND (PKCACQ)... 77
TABLE 70: RESPONSE TO VERIFY PSAM PUBLIC KEY CERTIFICATE COMMAND .. 78
TABLE 71: RESPONSE CODES TO VERIFY PSAM PUBLIC KEY CERTIFICATE COMMAND .. 78
TABLE 72: SUBMIT INITIAL KEY COMMAND ... 80
TABLE 73: RESPONSE TO SUBMIT INITIAL KEY COMMAND .. 82

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

xi

TABLE 74: RESPONSE CODES TO SUBMIT INITIAL KEY COMMAND ... 82
TABLE 75: FORMAT OF DATA RECOVERED FROM DS ... 83
TABLE 76: CONTENTS OF THE DS HASH .. 83
TABLE 77: INITIATE PIN ENTRY COMMAND ... 84
TABLE 78: RESPONSE TO INITIATE PIN ENTRY COMMAND .. 86
TABLE 79: SCD SESSION KEY DERIVATION .. 86
TABLE 80: CDP KEY DERIVATION .. 87
TABLE 81: RESPONSE CODES TO INITIATE PIN ENTRY COMMAND .. 87
TABLE 82: GET PIN COMMAND .. 88
TABLE 83: DEFINITION OF PIN BLOCK FORMAT .. 88
TABLE 84: RESPONSE TO GET PIN COMMAND ... 89
TABLE 86: RESPONSE CODES TO GET PIN COMMAND ... 90
TABLE 87: TERMINATE PIN ENTRY COMMAND ... 90
TABLE 88: RESPONSE TO TERMINATE PIN ENTRY COMMAND.. 91
TABLE 89: RESPONSE CODES TO TERMINATE PIN ENTRY COMMAND .. 92
TABLE 90: USER INTERFACE-SPECIFIC COMMANDS .. 92
TABLE 91: GET AMOUNT COMMAND ... 94
TABLE 92: RESPONSE TO GET AMOUNT COMMAND .. 96
TABLE 93: RESPONSE CODES TO GET AMOUNT COMMAND .. 96
TABLE 94: GET AMOUNT ENHANCED COMMAND ... 97
TABLE 95: RESPONSE TO GET AMOUNT ENHANCED COMMAND .. 98
TABLE 96: RESPONSE CODES TO GET AMOUNT ENHANCED COMMAND .. 99
TABLE 97: TRANSACTION COMPLETED COMMAND .. 99
TABLE 98: RESPONSE TO TRANSACTION COMPLETED COMMAND ... 100
TABLE 99: RESPONSE CODES TO TRANSACTION COMPLETED COMMAND ... 100
TABLE 100: FUNDS AVAILABLE COMMAND.. 101
TABLE 101: RESPONSE TO FUNDS AVAILABLE COMMAND... 102
TABLE 102: RESPONSE CODES TO FUNDS AVAILABLE COMMAND ... 102
TABLE 103: MERCHANT APPLICATION HANDLER-SPECIFIC COMMANDS .. 103
TABLE 104: ICC COMMANDS SUPPORTED BY PSAM HANDLER ... 105
TABLE 105: RESPONSE CODES APPLICABLE TO PSAM HANDLER .. 110
TABLE 106: CLA/INS BYTE DEFINITIONS .. 112
TABLE 107: APPLICATION-INDEPENDENT PSAM COMMANDS .. 113
TABLE 108: SUCCESSFUL RESPONSE TO PSAM APPLICATION COMMAND ... 114
TABLE 109: ERROR RESPONSE TO PSAM APPLICATION COMMAND .. 115
TABLE 110: APPLICATION STATUS WORDS .. 115
TABLE 111: START-UP PSAM COMMAND .. 116
TABLE 112: START-UP COMMAND RESPONSE .. 117

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

xii

TABLE 113: GET SUPPORTED AIDS COMMAND ... 118
TABLE 114: RESPONSE TO GET SUPPORTED AIDS ... 118
TABLE 115: PSAM SHUTDOWN COMMAND.. 119
TABLE 116: RESPONSE TO PSAM SHUTDOWN COMMAND .. 120
TABLE 117: GET NEXT COMMAND .. 121
TABLE 118: RESPONSE TO GET NEXT COMMAND ... 121
TABLE 119: RESPONSE COMMAND .. 122
TABLE 120: SYNCHRONIZE PSAM/PIN PAD COMMAND ... 123
TABLE 121: RESPONSE TO SYNCHRONIZE PSAM/PIN PAD COMMAND .. 124
TABLE 122: ASW1-ASW2 RESPONSE CODES TO SYNCHRONIZE PSAM/PIN PAD COMMAND 124
TABLE 123: CREATE FILE COMMAND .. 126
TABLE 124: RESPONSE TO CREATE FILE COMMAND... 126
TABLE 125: RESPONSE CODES TO CREATE FILE COMMAND ... 127
TABLE 126: DELETE FILE COMMAND .. 128
TABLE 127: RESPONSE TO DELETE FILE COMMAND ... 128
TABLE 128: RESPONSE CODES TO DELETE FILE COMMAND ... 129
TABLE 129: ADD FILE RECORD COMMAND .. 130
TABLE 130: RESPONSE TO ADD FILE RECORD COMMAND ... 130
TABLE 131: RESPONSE CODES TO ADD FILE RECORD COMMAND ... 131
TABLE 132: GET FILE RECORD COMMAND .. 132
TABLE 133: RESPONSE TO GET FILE RECORD COMMAND ... 133
TABLE 134: RESPONSE CODES TO GET FILE RECORD COMMAND ... 134
TABLE 135: UPDATE FILE RECORD COMMAND ... 135
TABLE 136: RESPONSE TO UPDATE FILE RECORD COMMAND .. 136
TABLE 137: RESPONSE CODES TO UPDATE FILE RECORD COMMAND .. 136
TABLE 138: FIND AND GET FILE RECORD COMMAND... 137
TABLE 139: RESPONSE TO FIND AND GET FILE RECORD COMMAND ... 138
TABLE 140: RESPONSE CODES TO FIND AND GET FILE RECORD COMMAND .. 138
TABLE 141: DELETE FILE RECORD COMMAND .. 139
TABLE 142: RESPONSE TO DELETE FILE RECORD COMMAND ... 140
TABLE 143: RESPONSE CODES TO DELETE FILE RECORD COMMAND ... 140
TABLE 144: FIND AND DELETE FILE RECORD COMMAND .. 141
TABLE 145: RESPONSE TO FIND AND DELETE FILE RECORD COMMAND ... 142
TABLE 146: RESPONSE CODES TO FIND AND DELETE FILE RECORD COMMAND ... 142
TABLE 147: CLEAR FILE COMMAND ... 143
TABLE 148: RESPONSE TO CLEAR FILE COMMAND .. 144
TABLE 149: RESPONSE CODES TO CLEAR FILE COMMAND .. 144
TABLE 150: DATA STORE HANDLER SPECIFIC COMMANDS .. 145

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

xiii

TABLE 151: INITIATE COMMUNICATION SESSION COMMAND .. 146
TABLE 152: RESPONSE TO INITIATE COMMUNICATION SESSION COMMAND ... 147
TABLE 153: RESPONSE CODES TO INITIATE COMMUNICATION SESSION COMMAND ... 147
TABLE 154: TERMINATE COMMUNICATION SESSION COMMAND ... 148
TABLE 155: RESPONSE TO TERMINATE COMMUNICATION SESSION COMMAND .. 149
TABLE 156: RESPONSE CODES TO TERMINATE COMMUNICATION SESSION COMMAND .. 149
TABLE 157: COMMUNICATION HANDLER-SPECIFIC COMMANDS .. 150
TABLE 158: EVENT TYPES .. 151
TABLE 159: ADD EVENT COMMAND .. 152
TABLE 160: GET EVENT COMMAND .. 153
TABLE 161: RESPONSE TO GET EVENT COMMAND .. 153
TABLE 162: RESPONSE CODES TO GET EVENT COMMAND .. 154
TABLE 163: FIND EVENT COMMAND ... 155
TABLE 164: RESPONSE TO FIND EVENT COMMAND ... 155
TABLE 165: RESPONSE CODES TO FIND EVENT COMMAND ... 156
TABLE 166: FLUSH EVENT QUEUE COMMAND ... 157
TABLE 167: RESPONSE TO FLUSH EVENT QUEUE COMMAND .. 157
TABLE 168: RESPONSE CODES TO FLUSH EVENT QUEUE COMMAND .. 158
TABLE 169: EVENT HANDLER-SPECIFIC COMMANDS ... 158
TABLE 170: DATA ELEMENTS CONTAINED IN THE PIN PAD ... 175
TABLE 171: DATA ELEMENTS CONTAINED IN THE PSAM ... 176
TABLE 172: FORMAT OF THE ACQUIRER CERTIFICATE (PKCACQ) .. 185
TABLE 173: FORMAT OF THE PSAM CERTIFICATE (PKCPSAM) ... 185
TABLE 174: FORMAT OF THE PIN PAD CREATOR CERTIFICATE (PKCPPC) ... 186
TABLE 175: FORMAT OF THE PIN PAD CERTIFICATE (PKCPP) .. 187
TABLE 176: LENGTH OF PUBLIC KEY MODULUS.. 189
TABLE 177: SUMMARY OF RESPONSE CODES ... 191
TABLE 178: MESSAGE CODES ... 196
TABLE 179: CODING OF ALG ... 203
TABLE 180: SEARCH TYPE CODING .. 220

October 2013

TAPA Application Architecture 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

xiv

LIST OF FIGURES

FIGURE 1: LOGICAL COMPONENTS OF THE TERMINAL ARCHITECTURE FOR PSAM APPLICATIONS 10
FIGURE 2: TERMINAL PSAM INITIALISATION ... 37
FIGURE 3: EXAMPLE OF BYTES READ FROM MAGNETIC STIPE ... 42
FIGURE 4: EXAMPLE OF BYTES WRITTEN TO TRACK 3 .. 46
FIGURE 5: HANDLER TO PROCESSOR CARD INTERFACE ... 48
FIGURE 6: PROCESSOR CARD MESSAGE TRANSLATION ... 49
FIGURE 8: PIN BLOCK FORMAT ... 88
FIGURE 9: MESSAGE TRANSLATION FOR COMMANDS TO PSAM .. 106
FIGURE 10: MESSAGE TRANSLATION FOR RESPONSE FROM PSAM .. 108
FIGURE 11: PIN PAD AND PSAM KEY HIERARCHY ... 161
FIGURE 12: PIN PAD/PSAM ENVIRONMENTS ... 162
FIGURE 13: PSAM/PIN PAD INITIALIZATION .. 164
FIGURE 14: SEPARATE PIN ENTRY AND AMOUNT CONFIRMATION ... 169
FIGURE 15: COMBINED PIN ENTRY AND AMOUNT CONFIRMATION ... 169
FIGURE 16: PIN ENTRY WITH NO AMOUNT CONFIRMATION ... 169
FIGURE 17: ONLINE PIN VERIFICATION .. 171
FIGURE 18: SECURE CRYPTOGRAPHIC DEVICE .. 173

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

1

1. Revision Log

Version Date Affects Brief Description of Change

2.0 4/00 All Initial Publication

2.1 1/01 All Editorial revisions

 Tables 16,
46, 52

Change description of SPMAC field.

 6.1.1, 6.1.2 Change example data for magnetic stripe read and write

 6.1.2 Restrict writing to the magnetic strip to Track 3 only.

 Table 66 Change label and description of LPKM field.

 Tables 72,
73, 74, 81

Fix lengths of fields

 Table 85 Fix Destination address, add SPMAC field

 Table 98 Add Synchronize PSAM/PIN Pad command

 Table 105 Permit 0 (zero) AIDs.

 Table 123 Clarify use of Pointer Orientation field

 11.2.6.1 Clarify use of the Update Record command

 Table 130 Add LENSKEY field

 Table 149 Allow event type ’01’ to be originated by the PSAM Handler

 Figure 11 Add flow arrow for error case

 Table 166 Set minimum key lengths to 1024 bits. Fix maxima for two keys. Add
warning regarding use of shorter keys.

 Tables 58
and 59

7.2.1.2,
14.5.4.3,
14.6.2,
14.6.2.1,
14.6.3,
14.6.3.1

Allow for multiple PIN Pad key versions

 Tables 60
and 167

Add response codes for PIN Pad processing.

 7.2.5.3 Require that derived session keys have odd parity

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

2

Version Date Affects Brief Description of Change

 14.5.3.4 Require that the RSA and padding operations be performed within the
protected devices

 14.6.10.1 Acquirers are responsible for ensuring that expired CA public keys are
no longer used after they expire.

3.0 5/12 All Editorial revisions and functional enhancements.
Replace Tamper Evident Device with Secure Device.
Remove reference to Common Electronic Purse (CEP)
Updated figures and fonts

 2.5.2 Replaced ISO/IEC 14443 with EMV Contactless Specifications for
Payment Systems – Entry Point Specification

Updated references to current versions

 3.2 Compliance awareness with PCI Data Security Standards added

 4.2.4 Add encrypted response for handler

 4.3 Add encrypted commands

 4.4 Specify keys to use for encrypted data.

 6.1.1 Add enciphered magnetic stripe responses

 6.2.2 Add enciphered commands

 6.4 Reference to EMVCo contactless interface specification included

 7.2.1.2 Clarifying which public key version to select if more than one match

 7.2.1.3 Reference to table corrected

 Table 60 Response codes removed

 7.2.1.5 New requirement added

 Table 68 Response codes added

 7.2.5 KSESCDP added

 7.2.4.2 Reference in step 5 corrected

 New session key KSESDATA added

 8.1 A new Get Amount Command (get Amount 2) added to include EMV
field Amount Other

 9 Note on discrepancies between ISO and EMV added

 Table 109 Response codes added

 14.1 Introduce PIN Pad less Secure Devices

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

3

Version Date Affects Brief Description of Change

 14.3.1.5 SD requirements changed to allow for key entry of non-PIN data
outside payment application

 14.6.2 Changed to reference the PCI PTS requirements, only

 14.6.3 Changed to reference the PCI PTS requirements; redundant
requirements removed

 14.8 Add Secure Devices in terminals without any PIN Pad

 Table 176 New response code added: Transaction interrupt request

 17 Add acronyms CDP and SD

3.0 10/13 all Limit copyright to Nets Denmark A/S

3.0 many Change Secure Device to Secure Cryptographic Device and acronym
SD to SCD

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

4

2. Document Overview
2.1 Purpose

The purpose of this document is to provide the information
necessary for a POS device manufacturer or application
developer to gain an understanding of the Terminal
Architecture for PSAM Applications (TAPA) for purposes of
creating multi-function applications.

2.2 Intended Audience
This document is intended for use by all technical staff
involved in the development, testing, operation, and
maintenance of one or more structural components of the
Terminal Architecture for PSAM Applications.

2.3 Included in this Document
Included in this document are:

• Overview of the Terminal Architecture for PSAM
Applications and a description of the individual structural
components comprising that architecture.

• Description of the general functional requirements to be
performed by each structural component.

• Description of the message formatting, addressing,
exchanging of messages between structural components,
and command sets used by these components.

• Description of the general message and error handling
procedures to be conducted within the terminal
application.

• Description of the terminal and PSAM initialization
procedures.

2.4 Not Included in this Document
Not included in this document are:

• Specifications already available in other documents, such
as the EMV specifications and ISO standards.

• Scheme specific information related to business
requirements, design options, or implementation details –
including supported command sets, transaction data flows,
or user interface requirements.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

5

• Specific message formats or online communication
protocols used.

2.5 Reference Information

2.5.1 Requirement Numbering
Requirements in this specification are uniquely numbered with
the number appearing next to each requirement.

A requirement can have different numbers in different
versions of the specifications. Hence, all references to a
requirement must include the version of the document as well
as the requirement’s number.

2.5.2 References
The following documents are referenced in this specification:

1. Terminal Architecture for PSAM Applications, Overview,
version 2.0, April 2000.

2. ISO/IEC 7816-3: 2006, “Identification cards - Integrated
circuit cards with contacts - Part 3: Electrical interface and
transmission protocols".

3. ISO/IEC 7816-4: 2005, “Identification cards – Integrated
circuit cards with contacts - Part 4: Organization, security
and commands for interchange”.

4. EMV Contactless Specifications for Payment Systems –
V2.1, March 2011

5. ISO/IEC 9797-1:2011 “Information technology - Security
techniques - Message Authentication Codes (MACs) - Part
1: Mechanisms using a block cipher”

6. EMV, version 4.3, November 2011 “Integrated Circuit Card
Specification for Payment Systems” including later
bulletins

7. ISO/IEC 646: 1991, “Information technology - ISO 7-bit
coded character set for information interchange“

8. ISO 8859-15: 1999, “Information technology – 8-bit single-
byte coded graphic character sets – Part 15: Latin alphabet
No.9”

9. ISO/IEC 7813: 2006, “Information technology –
Identification Cards - Financial Transaction Cards”

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

6

10. ISO/IEC 4909: 2006 “Identification cards – Financial
transaction cards – Magnetic stripe data content for track
3”

11. PCI SSC PTS, version 3.1, June 2011, “PIN Transaction
Security”

2.5.3 Command and Response Format Conventions
This specification adopts the following conventions for
specifying the commands and responses exchanged between
the terminal and PSAM applications. Commands and
responses have been extended to include plaintext as well as
enciphered commands.

PSAM Commands

For commands sent to the PSAM by the MAD-Handler, this
specification documents the entire set of ICC Command
Terminal Messages (Messages Type ‘42’, ‘46’and ‘47’),
including the embedded Command APDU, which is being
forwarded to the PSAM. To aid the PSAM developer, the C-
APDU portion is shaded. The document will, where applicable,
show the enciphered as well as the plaintext versions.

Commands requesting an enciphered response are identified
by the most significant bit of the sub handler address being
set, i.e. that 1000 0000b is added to the “normal” sub handler
address.

For commands sent to the PSAM that are generated by the
PSAM Handler, this specification documents the C-APDU,
which is generated by the PSAM Handler.

PSAM Responses

This specification defines the format and contents of the
Response Terminal Message (Message Type ‘FF’) received by
the MAD-Handler in response to a command sent to the
PSAM. The entire response message, excluding the Response
Code (RC) is sent to the PSAM Handler by the PSAM within a
response APDU. To aid the PSAM developer, the portion of
the response generated by the PSAM is shaded.

A detailed description of the message handling performed by
the PSAM Handler can be found in section 9.1. A description
of the PSAM application requirements is in section 10.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

7

2.5.4 Notational Conventions
Hexadecimal Notation

Values expressed in hexadecimal form are enclosed in single
quotes (e.g., ‘_’). For example, 27509 decimal is expressed in
hexadecimal digits as ‘6B75’.

Letters used to express constant hexadecimal values are
always upper case (‘A’ - ‘F’). Where lower case is used, the
letters have a different meaning explained in the text.

Binary Notation

Values expressed in binary form are followed by a lower case
“b”. For example, ‘08’ hexadecimal is expressed in binary as
00001000b.

Document Word Usage

The following words are used often in this document and have
specific meanings:

• Must

Defines a product or system capability that is required,
compelled, or mandatory.

• Should

Defines a product or system capability that is highly
recommended.

• May

Defines a product or system capability that is optional.

Notation used in the PIN Pad Cryptography section

⊕ represents the bitwise XOR function

SHA-1 (X) := the SHA-1 hash of X

SHA (X,n) := leftmost n bytes of SHA-1(X)

2.6 Document Organization
The document is organized as follows:

• Section 1 is the revision log.

• Section 2 provides an overview of this document.

• Section 3 provides an architectural overview of the
Terminal Architecture for PSAM Applications (TAPA).

• Section 4 provides information concerning the general

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

8

functional requirements of TAPA architectural
components.

• Section 5 describes the processing requirements of the
Multi-Application Driver Handler.

• Section 6 describes the processing requirements of the
Card Handlers.

• Section 7 describes the processing requirements of the
User Interface Handlers.

• Section 8 describes the processing requirements of the
Merchant Application Handlers.

• Section 9 describes the processing requirements of the
PSAM Handlers.

• Section 10 describes the requirements for TAPA-compliant
PSAM applications

• Section 11 describes the processing requirements of the
Data Store Handler.

• Section 12 describes the processing requirements of the
Communication Handler.

• Section 13 describes the processing requirements for the
Event Handler.

• Section 14 provides the requirements for the use of Secure
Cryptographic Devices and PIN Processing when a PSAM is
used in conjunction with a PIN Pad or with a Secure
Cryptographic Device, only.

• Section 15 provides a listing of Response Codes that may
be generated.

• Section 16 describes the referenced data elements.

• Section 17 provides a list of acronyms

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

9

3. Architectural Overview
3.1 Introduction

This section provides an overview of the Terminal Architecture
for PSAM Applications (TAPA) and outlines the general
functional and processing requirements that this architecture
is intended to fulfil. This section will additionally identify and
describe the various structural components comprising the
overall TAPA architecture.

3.2 General Requirements
The TAPA application architecture defines a generic Terminal -
PSAM interface such that a terminal application may function
using PSAM’s produced by different manufacturers.

The TAPA application architecture supports a multi-function
point-of-sale terminal application that can support both EMV
and other payment applications as well as additional
proprietary applications such as loyalty programs.

TAPA is designed to be independent of the implementation
strategy chosen and is independent of both terminal operating
system and device architecture.

TAPA does not impose restrictions on the type of transmission
protocol used to exchange messages between most structural
components. However, communication with ICCs is assumed
to conform to the command-response protocol defined in
reference 3, ISO/IEC 7816-4.

TAPA does not restrict the physical configuration of the
terminal. The terminal may exist as either a complete unit of
fully integrated components (such as a conventional payment
terminal) or may exist to varying degrees as a distributed
system using shared components such as an Internet payment
server. For a distributed system, the PCI Data Security
Standard and the PCI PTS are to be complied with.

3.3 Terminal Application Architecture
The terminal application architecture consists of a set of
logical components. These components include a Router, a set
of Device Handlers, a Multi-Application Driver Handler, and
one or more Purchase Secure Application Modules (PSAM).
Each of these components is described in detail in subsequent
sections of this document. Figure 1 provides an illustration of
the various components, relative location, and relationships

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

10

within the TAPA architecture. (Note that the device handlers
are grouped into categories according to their function.)

Figure 1: Logical Components of the Terminal Architecture for PSAM
Applications

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

11

4. Functional Requirements
This section provides a detailed description of the various
structural components comprising the TAPA architecture and
their respective functional and processing requirements. For
each component, the command and response sets are defined
as well as required processing and possible Response Codes.

Note: Certain requirements are only applicable if the terminal
uses the PSAM controlled PIN Pad processing specified in
section 14.4. Such requirements are prefaced with the phrase
“PIN Pad Requirement ”.

4.1 The Router
The Router functions as a communication channel and is the
central entity to which all Handlers are attached. The
communication channel may be implemented on a variety of
hardware and software protocols such as an internal bus (in
the case of a stand-alone POS device), a LAN in a multi-lane
controller environment, or TCP/IP if architectural components
are remotely distributed on the Internet or an intranet. In
order to accommodate all of the aforementioned
configurations, the Router must function purely as a simple
transport mechanism that is application and device
independent.

The Router is primarily responsible for the transfer of
messages (commands and responses) from one Handler to
another. In this way, the Router functions as a pure transport
mechanism -- ensuring that messages received from an
origination Handler are delivered to the destination Handler as
specified in message address fields. By means of transferring
messages from one Handler to another, the Router also
effectively passes application control from one Handler to
another. Before a destination Handler responds to a message,
it may initiate a series of message exchanges to Handlers other
than the originator of the message.

Aside from validating the address fields of a message to ensure
it can be delivered to the specified destination, the Router
remains ignorant of the data content of the messages it
conveys. This transparency allows the Router to remain
application independent. It is the responsibility of the
individual Handlers to validate, process, and respond to the
contents of the received message.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

12

4.1.1 Functional Requirements
4.1.1.1 The Router must validate the source and

destination address and sub-address fields in
messages received from an origination Handler
to ensure they are defined in the specification
and are also supported by the terminal
application. This validation process will ensure
that the message can be delivered to the
appropriate destination Handler.

4.1.1.2 The Router must not intervene or prevent
routable messages from being delivered to a
destination Handler.

4.1.1.3 The Router should implement some error
checking mechanism to ensure the data
integrity of messages exchanged between
handlers across physical interfaces. The
mechanism implemented is left to the
discretion of the terminal developer; however,
LRC, CRC, or MAC checking is frequently used.

4.1.2 Error Handling
4.1.2.1 The Router must generate error messages if

either the source or destination address is
invalid.

Table 1 provides a listing of Router generated
Response Codes.

Table 1: Router Response Codes

Response Code Description

'FFF0' Invalid Source Address: the source address does not match the
originator of the message.

'FFF1' Invalid Destination Address: the message cannot be delivered
because it contains an invalid destination address.

4.2 The Handlers
Handlers are logical entities responsible for either managing
the interface to a specific hardware component or peripheral
device, or responsible for performing specific operational
control functions. There are three types of Handler: Device

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

13

Handlers, the Multi-Application Driver Handler and the Event
Handler.

4.2.1 Device Handlers
Device Handlers are logical entities responsible for managing
the bi-directional interface to a hardware component or
peripheral device such as a card reader, modem, or customer
keypad. A device Handler may manage either a simple or
sophisticated interface. A Device Handler may be a simple
mechanism in the sense that it may only transport a message
received from the Router to the device it operates and
automatically respond to the Handler that originated the
message. In the other extreme, it may be a very sophisticated
piece of software that analyzes the content of incoming and
outgoing messages in addition to manipulating the message
addresses.

The existence of a Device Handler serves the purpose of
shielding interface and implementation details for the specific
device it supports from other components in the system. A
Device Handler should therefore perform only those functions
directly associated with support of the hardware or peripheral
equipment it is intended to support -- thereby allowing
Handlers to remain as application independent as possible.
Each of these Handlers is described in greater detail in
subsequent sections of this document. Note that additional
Handlers may be identified and defined as necessary to
accommodate a particular implementation or environment.

4.2.2 Multi-Application Driver Handler
The Multi-Application Driver Handler is the operative software
component of the terminal application which, in addition to
selecting and controlling transaction processing, performs a
number of operational and maintenance functions. The Multi-
Application Driver Handler is described in greater detail in
Section 5.0.

4.2.3 Event Handler
The Event Handler is a logical entity responsible for receiving
notification of asynchronous external events and providing
notification of these events to the terminal’s application
processing.

The Device Handlers will forward messages to the Event
Handler when events occur such as a card insertion or a key
press is detected. A MAD Handler application, or an entity
(such as a PSAM application) to which the MAD Handler has

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

14

delegated control, may retrieve the events and take
appropriate actions.

4.2.4 General Characteristics
The following characteristics are common to all classes of
Handler:

• Handlers are connected to and communicate directly with
the Router. All messages either originating from or
destined for other Handlers must be exchanged via the
Router.

• Handlers are application independent in that they may be
accessed by multiple applications resident in the terminal.

• Each Handler is assigned a unique logical address as
specified in Table 2. The handler category is assigned sub-
address ‘00’, which permits it to be separately addressed
as a logical component.

• A Handler may be able to respond with plaintext as well as
enciphered data.

Additional Handler and device addresses may be assigned as
needed.

Note: Secure communication between the (Secure) Card
Reader and the PSAM to enable Card Data Protection (CDP)
may be used for PCI compliance. For this, the response from the
Handler to the PSAM is enciphered. Requesting an enciphered
response is specified by setting the MSB of the Handler sub-
address to '1'.

Table 2: Handler Address Assignments

Handler category Address Sub-address Handler

PSAM '00' '00' The PSAM Handler

 '01' PSAM Handler 1

 '02' PSAM Handler 2

 '03' - '7F' PSAM Handler 3 – PSAM Handler 127

 '80' - 'FF' PSAM Handler with enciphered response

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

15

Handler category Address Sub-address Handler

MAD '01' '00' The Multi-Application Driver Handler

 ‘80’ The Multi-Application Driver Handler, with
enciphered response

 '01' - '7F' and
‘81’-‘FF’

Reserved for Future Use

Card '02' '00' The Card Handler

 '01' Magnetic stripe Reader

 '02' Processor Card Reader

 '03' Memory Card Reader

 ‘04’ Contactless Card Reader

 '05' - '7F' Reserved for Future Use

 ‘80’ The Card Handler with enciphered response

 ‘81’ The Magnetic stripe Reader with enciphered
response

 ‘82’ The Processor Card Reader with enciphered response

 ‘84’ The Contactless Card Reader with enciphered
response

 ‘85’ – ‘FF’ Reserved for Future Use

User Interface '03' '00' The User Interface Handler

 '01' PIN Pad

 '02' Customer Printer

 '03' Customer Key Pad

 '04' Customer Display

 '05' - '80' Reserved for Future Use

 ‘81’ PIN PAD with enciphered command/response

 ‘82’ –‘FF’ Reserved for Future Use

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

16

Handler category Address Sub-address Handler

Merchant Application '04' '00' The Merchant Application Handler

 '01' Merchant Key Pad

 '02' Merchant Printer

 '03' Merchant Log

 '04' Merchant Display

 '05' - 'EF' Reserved for Future Use

 'F0' - 'FF' Serial ports

Data Store '05' '00' The Data Store Handler

 '01' - 'FF' Reserved for Future Use

Communication '06' '00' The Communication Handler

 '01' - 'FF' Reserved for Future Use

Event ‘07’ ‘00’ The Event Handler

 '01' - 'FF' Reserved for Future Use

RFU '08 - 'FF’ any Reserved for Future Use

4.2.5 Functional Requirements
This section defines the functional requirements to be
supported by all Handlers.

4.2.5.1 A Handler that receives a command must
always respond to the originator of that
command (except as noted in Section 13.2.1).

4.2.5.2 Prior to generating a response, a destination
Handler must be permitted to issue commands
to Handlers other than the originator of the
initial command.

4.2.5.3 A Handler must only respond to the originator
of the command after all required subsequent
dialogue has been completed with other
Handlers.

4.2.5.4 After sending a command, a Handler must not
send another command to the same destination
or for the same thread prior to receiving a

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

17

response (except as noted in Section 13.2.1).
(See section 5.5 for a discussion of multi-
threading).

4.2.5.5 When constructing a response, the responding
Handler must use the source address and sub-
address of the command message as the
destination address and sub-address of the
response. The Thread Identifier (IDTHREAD) from
the original command message must be
included in the response.

4.2.5.6 A Handler should be limited to performing only
those functions as needed to either directly
support a particular device or manage a
particular operation.

4.2.5.7 When a Handler receives a command message
from another terminal component, it must
return a response to the requesting Handler.

A successful response must contain a Response
Code of ‘0000’.

If the command has not been processed
correctly, the handler must return the
appropriate Response Code.

4.2.5.8 All Handlers must be able to receive and
process messages with a message data length
of at least 1024 bytes (LDATA ≤ ‘0200’). (Note:
terminal applications must only rely on the
ability to send longer messages in a proprietary
environment).

4.3 Message Handling
Command and informational data is exchanged between
components of the application by use of Terminal messages as
defined in Table 3.

Table 3: Terminal Message Format

Field Length Format Contents

Destination Address 2 binary Handler address || Handler Sub-address

Source Address 2 binary Handler address || Handler Sub-address

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

18

Message Type 1 binary The message type of the command message, or 'FF' to
indicate that it is a response message.

IDTHREAD 1 binary Thread Identifier assigned by the Multi Application Driver
Handler.

LDATA 2 binary Length of the message data field

Message Data var. var. Data passed between Handlers. This field may not always
contain data.

Message types can be either handler-dependent or handler-
independent. Handler-independent messages are messages
that are common to and supported by multiple handlers
within the TAPA architecture. Handler-dependent messages
are those supported only by specific Handlers.

The following fields comprise the Handler to Handler message
format:

• The Destination Address field contains the address and
sub-address of the Handler to which the Router is
requested to deliver the message. Setting most significant
bit in the destination sub address requires that the
response is encrypted.

• The Source Address field contains the address and sub-
address of the Handler that generated the message.

• The Message Type field is used to identify the type of
command or response being sent. Table 4, Table 5 and
Table 6 provide a list of currently defined Message Types.

• The Thread Identifier field is supplied by the Multi-
Application Driver and is used in systems where the PSAM
Handler can manage several transactions concurrently. In
single transaction systems, this field can be defaulted.

• The LDATA field provides the length of the data contained in
the Message Data field.

• The Message Data field contains the data being transferred
between Handlers in command and response messages.
Note that, in a response message, the data includes a 2-
byte Response Code.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

19

Table 4: Terminal Messages, Handlers 0-2

 Handler Category

Message
Type

Command/Message Name PSAM
Handler (0)

MAD
Handler (1)

Card Handler
(2)

'40' Read Magnetic Stripe √

'41' Write Magnetic Stripe √

'42' ICC Command √ √

'43' ICC Power-On √ √

'44' ICC Power-Off √ √

'45' ICC Query √ √

‘46’ Verify Offline PIN √

‘47’ ICC Command partially
encrypted

√ √

‘48’ ICC Command fully
encrypted

√ √

'F0' Open Handler √ √

'F1' Close Handler √ √

'F3' Write Handler String √ √

'F4' Read Handler String √ √

'F5' Get Handler Addresses √ √

'FF' Response Message √ √ √

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

20

Table 5: Terminal Messages, Handlers 3-5

 Handler Category

Message
Type

Command/Message Name User
Interface
Handler (3)

Merchant
Application
Handler (4)

Data Store
Handler (5)

'60' Confirm Amount √

'61' Display Message √ √

'63' Print Message √ √

'64' Purge Print Buffer √ √

‘65’ Get Key Check Value √

‘66’ Verify PSAM Public Key
Certificate

√

‘67’ Get PIN Pad Public Key
Record

√

‘68’ Submit Initial Key √

‘69’ Initiate PIN Entry √

‘6A’ Get PIN √

‘6C’ Terminate PIN Entry √

'80' Get Amount √ √

'81' Transaction Completed √

‘82’ Funds Available √ √

'90' Create File √

'91' Delete File √

'92' Add File Record √

'93' Get File Record √

'94' Update File Record √

'95' Find and Get File Record √

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

21

 Handler Category

Message
Type

Command/Message Name User
Interface
Handler (3)

Merchant
Application
Handler (4)

Data Store
Handler (5)

'96' Delete File Record √

'97' Find and Delete File
Record

 √

'98' Clear File √

'F0' Open Handler √ √ √

'F1' Close Handler √ √ √

'F3' Write Handler String √ √ √

'F4' Read Handler String √ √ √

'F5' Get Handler Addresses √ √ √

'FF' Response Message √ √ √

'01' - '3F' Reserved for Proprietary
Use

All Others Reserved for Future Use

Table 6: Terminal Messages, Handler 6-7

 Handler Category

Message
Type

Command/Message Name

Co
m

m
.

Ha
nd

le
r (

6)

Ev
en

t
Ha

nd
le

r (
7)

'B0' Initiate Communication
Session

√

'B1' Terminate Communication
Session

√

'C0' Add Event to Queue √

'C1' Get Event from Queue √

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

22

 Handler Category

Message
Type

Command/Message Name

Co
m

m
.

Ha
nd

le
r (

6)

Ev
en

t
Ha

nd
le

r (
7)

'C2' Find Event on Queue √

'C3' Flush Event Queue √

'F0' Open Handler √ √

'F1' Close Handler √ √

'F3' Write Handler String √

'F4' Read Handler String √

'F5' Get Handler Addresses √ √

'FF' Response Message √ √

'01' - '3F' Reserved for Proprietary
Use

All Others Reserved for Future Use

4.3.1 Time-out Management
For most messages, the recipient is expected to perform the
requested action and respond when the action is complete.

4.3.1.1 If the requested action cannot be performed, or
the requested data is not available, then the
recipient must respond with an error response.

4.3.1.2 If a message includes a Timer Flag, and the
requested action cannot be performed, the
recipient must wait either until the action can
be performed, or until the maximum time, as
indicated (in milliseconds) in the Time field, has
passed. If all requested data is not available at
the end of the wait period, the available data is
returned.

For example, if the message is a Read request
for 200 bytes of data from the Communications
Handler – and at the end of the Wait time a 150
byte block of data is available – then the

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

23

available 150 bytes must be returned in the
response.

4.3.1.3 If either the Timer Flag is not set, or if the Time
field contains a value of binary zeros, a
response is required either when action is
complete or when it is known that it cannot be
completed.

If there is no malfunctioning identified but the
service cannot be provided, the requester may
wait indefinitely.

4.3.2 Exception Handling
If a handler is not able to perform the requested function, it
must respond to the sender with a Response Message
containing only the appropriate Response Code in the
message data. Specific Response Codes for each message type
are defined in these specifications. The terminal developer
may assign additional proprietary Response Codes as needed.

The recipient of a response message must handle all of the
defined Response Codes appropriately. Any unknown
Response Codes must be treated as an error.

4.4 Handler-Independent Messages
This section describes those commands that can be processed
by any Handler defined within the TAPA architecture.

4.4.1 Get Handler Addresses
The Get Handler Addresses command is used to obtain a list of
active and available addresses within a handler category.

4.4.1.1 The Get Handler command must conform to the
format defined in Table 7.

Table 7: Get Handler Addresses command

Field Value Length

Destination Address XX00 – this command is sent to a handler category
(for example, the PSAM Handler category).

2

Source Address Any 2

Message Type 'F5' 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

24

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0000’ 2

4.4.1.2 The Get Handler Addresses response must
conform to the format defined in Table 8

Table 8: Response to Get Handler Addresses command

Field Value Length

Destination Address Any 2

Source Address XX00 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA 3+ CNTSUBADDRESS 2

CNTSUBADDRESS Number of sub-addresses returned 1

SUBADDRESSN Available sub-address N in category 1

Response Code Response Code 2

4.4.1.3 The Response Codes applicable to the Get
Handler Addresses command are listed in Table
9.

Table 9: Response Codes to Get Handler Addresses command

Response Code Description

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

25

4.4.2 Open Handler
The Open Handler command is used to initialize or activate a
Handler. The initialization process may include the clearing of
buffers or performing other maintenance procedures deemed
necessary by the terminal developer.

4.4.2.1 All Handlers must be in the closed state before
terminal start- up.

4.4.2.2 The Open Handler command must conform to
the format defined in Table 10.

Table 10: Open Handler command

Field Value Length

Destination Address Any 2

Source Address Any 2

Message Type 'F0' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0000’ 2

4.4.2.3 The Open Handler response must conform to
the format defined in Table 11.

4.4.2.4 A response of “handler must be opened” must
be returned if a Handler receives a terminal
message prior to being opened.

4.4.2.5 A response of “handler already opened” must
be returned if a Handler receives the Open
Handler command while already in open status.

4.4.2.6 After successfully processing the Open Handler
command, the handler must be capable of
receiving and processing messages.

Note that the handler category is a separate logical unit from
the device handlers within the category. Opening the handler
category does not open other handlers within the category.
(For example, opening the Card Handler category does not
automatically open the Magnetic Stripe Reader.)

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

26

Table 11: Response to Open Handler command

Field Value Length

Destination Address Any 2

Source Address Any 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0002’ 2

Response Code Response Code 2

4.4.2.7 The Response Codes applicable to the Open
Handler command are defined in Table 12.

Table 12: Response Codes to Open Handler command

Response Code Description

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF8' Handler is already open

'FFFA' Handler cannot be opened: an error indicating that the Handler
cannot be opened.

4.4.3 Close Handler
The Close Handler command is used to close or deactivate a
previously opened Handler. Once closed, the affected Handler
is no longer accessible for processing additional commands,
except for the Open Handler command. Note: if the
Communication handler is closed while a communication
session is active, that communication session must be
immediately terminated.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

27

4.4.3.1 The Close Handler command must conform to
the format defined in Table 13.

Table 13: Close Handler command

Field Value Length

Destination Address Any 2

Source Address Any 2

Message Type 'F1' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0000’ 2

4.4.3.2 The Close Handler response must conform to
the format defined in Table 14.

4.4.3.3 A response of “handler already closed” must be
returned when a destination Handler receives a
Close Handler command while already in closed
status.

4.4.3.4 A response of “Handler cannot be closed” must
be returned when the physical device
processing cannot be terminated. For example,
the communication handler will return this
response when the modem will not hang up.

Table 14: Response to Close Handler command

Field Value Length

Destination Address Any 2

Source Address Any 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

28

LDATA ‘0002’ 2

Response Code Response Code 2

4.4.3.5 The Response Codes applicable to the Close
Handler command are defined in Table 15.

Table 15: Response Codes to Close Handler command

Response Code Description

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF9' Handler already closed

'FFFC' Handler cannot be closed: an error indicating that the Handler
cannot be closed.

4.4.4 Write Handler String
The Write Handler String command is used to send a data
string to a terminal device. For example, if sent to the User
Display, the data contained in the message will be a
displayable text string. Note that some handlers will not
support this function.

4.4.4.1 The Write Handler String command must
conform to the format defined in Table 16.

4.4.4.2 If the destination address is for either a Display
or a Printer device, the data string must be
coded as indicated in the Code Table Index.

4.4.4.3 PIN Pad requirement: If the Write Handler
String command is sent to the User Interface
Display Handler while the Secure Cryptographic
Device (SCD) is in PIN Entry State, the command
must include the SPMAC. The SCD must
authenticate the message using the KSESMAC of
the PSAM that initiated the PIN Entry.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

29

4.4.4.4 SCD requirement: If the Data String in the Write
Handler String command is enciphered, the SCD
must decipher the Data String using the
KSESDATA of the PSAM that initiated the
command.

Table 16: Write Handler String command

Field Value Length

Destination Address Any 2

Source Address Any 2

Message Type 'F3' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0006’ + Length of Message Data + L’ SPMAC 2

Timer Flag ‘00’ = Not Timed
‘80’ = Timed

1

Time Time-out value in milliseconds 4

Code Table Index If the destination is either a Display or a Printer
device, this field is an index to the character set
being used.

If the destination is neither a Display nor a
Printer device, this field is not used and may be
set to zeros.

If the originator of this command has
enciphered the data string, the most significant
bit of this byte is set to ‘1’.

1

Data String Data to be sent to the Handler var.

SPMAC MAC on Destination Address – Data String,
computed using KSESMAC. Only present if
message must be MAC’ed

0 or 8

4.4.4.5 All Display and Printer device Handlers must
support the Common Character set defined in
reference 6, EMV Book 4, Annex B.

4.4.4.6 The Write Handler String response must
conform to the format defined in Table 17.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

30

4.4.4.7 SCD requirement: If the Data String in the Write
Handler String command is required to be
enciphered, the SCD must encipher the Data
String using the KSESDATA of the PSAM that
initiated the command.

4.4.4.8 If the Handler does not support this function, it
must return a Response Code of Unsupported
Operation.

Table 17: Response to Write Handler String command

Field Value Length

Destination Address Any 2

Source Address Any 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0002’ 1

Response Code Response Code 2

4.4.4.9 The Response Codes applicable to the Write
Handler String command are listed in Table 18.

Note: The Response Codes defined in Table 18
are generic Response Codes and do not reflect
handler-specific Response Codes (such as ‘No
Connection for the communication handler’),
nor proprietary Response Codes that may exist
for specific operating environments.

 Table 18: Response Codes to Write Handler String command

Response Code Description

‘FF35’ Code Table not supported.

‘FF82’ Authentication Error (MAC validation failed)

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

31

Response Code Description

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF4' Handler must be initialized: the Handler cannot perform the
requested action until it has been initialized.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

4.4.5 Read Handler String
The Read Handler String command is used to retrieve
requested data from another Handler. For example, this
message may be used to retrieve a block of data from the
Communication Handler. Note that some handlers will not
support this function.

4.4.5.1 The Read Handler String command must
conform to the format defined in Table 19.

Table 19: Read Handler String command

Field Value Length

Destination Address Any 2

Source Address Any 2

Message Type 'F4' 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

32

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0007’ 2

Timer Flag ‘00’ = Not Timed
‘80’ = Timed

1

Time Time-out value in milliseconds 4

Code Table Index If the destination of the message is a Key-entry
device, this field is an index to the character set in
which the response data must be returned.

If the destination is not a Key-entry device, this
field is not used and may be set to zeros.

If the originator of this command requires the
response to be enciphered, the most significant bit
of this byte is set to ‘1’.

1

Len Number of bytes to read 2

4.4.5.2 The Read Handler String response must
conform to the format defined in Table 20.

4.4.5.3 If the responding Handler is a key-entry device,
the Returned Data String must be coded using
the character set specified in the Code Table
Index. If the character set is not supported, the
Handler must respond with the appropriate
Response Code (‘FF35’).

4.4.5.4 All key-entry device Handlers must support the
Common Character set defined in reference 6,
EMV Annex C.

4.4.5.5 If the Handler does not support this function, it
must return a Response Code of Unsupported
Operation.

Table 20: Response to Read Handler String command

Field Value Length

Destination Address Any 2

Source Address Any 2

Message Type 'FF' 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

33

IDTHREAD Thread Identifier of the request 1

LDATA Len + 2 2

Returned String Returned Data String Len

Response Code Response Code 2

4.4.5.6 The Response Codes applicable to the Read
Handler String command are defined in Table
21.

Note: The Response Codes defined in Table 21
are generic Response Codes and do not reflect
handler-specific Response Codes (such as ‘No
Connection for the communication handler’),
nor proprietary Response Codes that may exist
for specific operating environments.

Table 21: Response Codes to Read Handler String command

Response Code Description

‘FF35’ Code Table not supported.

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

'FFF4' Handler must be initialized: the Handler cannot perform the
requested action until it has been initialized.

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

4.4.6 Summary

4.4.6.1 The common Handler commands are listed in
Table 22. Any handler must support those with
a Destination address marked “any”. The

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

34

specified handlers must support those with
specific addresses.

Table 22: Handler-Independent commands

Destination

Address

Message

Type

Description

Any 'F0' Open Handler

Any 'F1' Close Handler

Any 'F3' Write Handler String

Any 'F4' Read Handler String

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

35

5. The Multi-Application Driver
Handler

The MAD Handler is the interface to the application software.
This software is responsible for running the transactions to be
performed on the terminal.

The application software may also include functions such as
Terminal initialization, Application Maintenance and Acquirer
Processing.

5.1 Application Selection
The first step in transaction processing consists of Application
Selection. This selection process must consider the type of
media being presented such as processor cards, memory cards
or magnetic stripe cards and therefore can be based on AID,
ATR, insertions, a button pressed or other. The result is that a
mutual application is agreed upon, often indicated by an AID.

During terminal initialization, the MAD-Handler has
constructed a cross-reference table that associates each
supported card application with the identity of the terminal
application, which must be used for processing. The terminal
application is denoted by the IDPSAMAPP. After selecting the
card application, the MAD-Handler uses this cross-reference to
invoke the correct terminal application. (See section 15.1.35
for a description of the IDPSAMAPP.)

5.2 Terminal Initialization
As part of normal terminal start-up, the terminal application
must perform an initialization procedure to ensure that all
logical components are present and functioning normally. The
terminal initialization process must include the following
procedures:

5.2.1.1 The MAD-Handler must open any necessary
Device Handlers through the issuance of
multiple Open Handler commands. The MAD-
Handler can determine the occupied sub-
addresses, if any, by using the Get Handler
Addresses command.

5.2.1.2 All PSAMs must be reset by sending an ICC
Power-On command to each occupied sub-
address. In the response the MAD Handler

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

36

receives the ATR and, if present, the Historical
Bytes.

5.2.1.3 The MAD Handler must issue the Start-up PSAM
command to each application at each occupied
PSAM sub-address.

5.2.1.4 The MAD Handler must issue the Get Supported
AIDs command to each application at each
occupied PSAM sub-address.

5.2.1.5 Prior to completing the configuration process,
the MAD Handler may be required to send one
or more application specific start-up commands
to the PSAM. The format and content of these
commands are outside the scope of this
specification, and must be defined in the
appropriate application specifications.

5.2.1.6 The terminal must successfully perform the
initialization sequence prior to initiating any
card transactions.

Figure 2 illustrates the PSAM Initialization process. The
corresponding behaviour of the PSAM will be described in
section 10.1. Section 10.3 contains details about the
commands.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

37

Figure 2: Terminal PSAM Initialisation

5.3 Terminal Shutdown
Certain terminals (in particular battery-operated devices)
require the ability to withdraw power from the PSAM between
cardholder transactions. When a card is inserted into the
device, power is restored to the PSAM and processing
commences.

Such terminals require that the PSAM be restarted very
quickly, without a lengthy initialization.

5.3.1.1 In order to ensure that the PSAM application is
able to save all outstanding data, and be easily
restarted, the terminal must send a PSAM Shut-
down command to each PSAM application, and
receive a response, prior to withdrawing power.

5.4 Terminal Control
When the terminal is initialized, the MAD Handler Application
software has control over the terminal’s functioning. The MAD
Handler applications may temporarily delegate control to
application processing in other devices – in particular the
PSAM. Control is transferred through an application-specific
message or command sent from a terminal application.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

38

The delegated component will then take over control of the
terminal’s functions – issuing messages to devices and
receiving responses. When its processing is completed, it will
send a response to the MAD Handler application, which
resumes control.

5.5 Multi-Threading
The TAPA message structure incorporates support for “multi-
threading”, where multiple concurrent transactions may be in
process, in varying stages of completion.

An example of an environment where this is required is a
distributed POS environment, consisting of a “server” (which
contains one or more PSAMs, the Data Store and the
connection to the acquirer’s host system) and multiple remote
terminals, each of which contains a card reader and a user
interface.

In such a system, the MAD Handler application functions are
distributed between the remote terminal and the server. The
messaging between the distributed and centralized parts of
the MAD Handler applications is proprietary to the device
developer and outside the scope of this specification. This
messaging must however include identification of the remote
terminal.

5.5.1.1 In order to support a multi-threading
environment, the MAD Handler must assign a
unique identifier (IDTHREAD) to each currently
active transaction, which must be used in all
Terminal Messages relating to that transaction.
The IDTHREAD value may be reused after a
transaction has been terminated.

5.6 Exception Handling
There are a variety of exception conditions that can occur
during application processing in a POS device. This section
addresses the exception conditions that affect the interface
between the MAD Handler application and the PSAM
application, and defines a set of functions that must be
provided by the PSAM and terminal applications in order to
allow the other component to attempt recovery.

Exception conditions fall broadly into the following categories:

• An inability to perform a particular transaction because of
a problem detected during the dialogue with the consumer
card. This is normally not a problem with the POS device,

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

39

and simply requires completing the transaction in a
defined manner.

• A temporary problem with a particular device. This may
particularly be the case in a distributed environment
where some resources are shared. This sort of problem
may possibly be overcome by retrying the failed function.

• A hardware or software problem with the POS device that
prevents continued correct functioning. The resolution to
this sort of problem is device and implementation
dependent, and outside the scope of this specification.

Exception processing is specific to each TAPA application, i.e.
IDPSAMAPP.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

40

6. The Card Handler
The Card Handler is responsible for managing the interface to
an integrated or peripheral card reading device. Currently
defined card reading devices include the magnetic stripe
reader, IC card reader, memory card reader and contactless
card reader. Each card reading device and its associated Card
Handler sub-address is defined in Table 2.

6.1 Commands sent to the Magnetic Stripe Reader

6.1.1 Read Magnetic Stripe
The Read Magnetic Stripe command is used to read data from
one or more ISO magnetic tracks. The command supports
enciphered as well as clear text response.

6.1.1.1 The Read Magnetic Stripe command must
conform to the format defined in Table 23.

Table 23: Read Magnetic Stripe command

Field Value Length

Destination Address '0201' / '0281' 2

Source Address Any 2

Message Type '40' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0007’ 2

Timer Flag ‘00’ = Not Timed
‘80’ = Timed

1

Time Time-out value in milliseconds 4

u Track Identifier of ISO track(s) to be read as shown
in Table 24

1

Len Length of track data to be read 1

The parameter track u is the hex value of the ISO identifier of
the magnetic stripe track(s) to be read (as illustrated in Table
24). See reference 9, ISO/IEC 7813 for a description of the

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

41

format of this data element. If the magnetic stripe track data is
to be returned in enciphered form, the highest bit in u is set. A
particular device is not required to support all of these
possibilities.

Table 24: Track Assignment

Track u Tracks to be read

1 ‘01’, ‘81’ ISO1

2 ‘02’, ‘82’ ISO2

3 ‘03’, ‘83’ ISO3

12 ‘0C’, ‘8C’ ISO1 and ISO2

13 ‘0D’, ‘8D’ ISO1 and ISO3

23 ‘17’, ‘97’ ISO2 and ISO3

123 ‘7B’, ‘FB’ ISO1, ISO2 and ISO3

Len is its maximum length, in bytes. On return, len gives the
actual length of the string read for each track. If more data is
available, a Response Code of “output buffer overflow” is
returned, together with the maximum length of data specified.
See reference 9, ISO/IEC 7813 for a description of the track
data formats.

This command returns when either track data is available or
the time-out is reached. The operation may return tracks that
have been read since the last execution of this command and
stored in a buffer. If the Handler does not have track buffering
capability, only one swipe of the card must be buffered and all
the track buffers will be cleared after their contents have been
returned by this command (even if all tracks were not
requested).

The format returned by the Read Magnetic Stripe command
depends on whether or not the data are encrypted.

For plaintext data each track is a track number (1, 2 or 3), a
length byte and the data whose size is specified by the length
byte. If multiple tracks are requested, there are multiple
instances of the above structure concatenated in the order
they were requested. The data is returned in ASCII format
with STX/ETX and LRC delimiters removed. Non-BCD digits are

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

42

left unconverted. (Please see Figure 3 below for an example.)

For example:

BYTES FROM CARD ==> BYTES DELIVERED TO APPLICATION

B1 23 4D 78 5F xx => 31 32 33 34 0D 37 38 35

^ ^ ^LRC

STX ETX

Figure 3: Example of bytes read from Magnetic Stipe

6.1.1.2 A response of “unsupported operation” must
be returned if the reader does not support one
or more of the requested tracks. If the
requested tracks are supported by the reader,
but are not present on the card swiped, then a
response of “successful operation” is returned
and the message contains those tracks that are
available on the card.

6.1.1.3 If an error occurs while reading one or more of
the requested tracks, a Response Code of
“transmission error” must be returned with the
length field of the corresponding tracks in the
returned message set to zero. In this case, the
data of the tracks that were read successfully is
available in the returned message.

6.1.1.4 The Read Magnetic Stripe clear text response
must conform to the format defined in Table
25.

6.1.1.5 SCD requirement: The data of the track(s) must
be enciphered using the KSESCDP of the PSAM
that initiated the Read Magnetic Stripe
command if the highest bit in u is set. The data
shall be formatted as specified in Table 26.

Note: After a Read Magnetic Stripe function has been
performed, the buffer containing the read data must be
cleared after returning the response or prior to performing a
subsequent read operation. Closing and re-opening the
Magnetic Stripe Reader may clear the buffer.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

43

Table 25: Clear text response to Read Magnetic Stripe command

Field Value Length

Destination Address Any 2

Source Address '0201'/'0281' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA Overall length of data that follows, var. 2

Magnetic Stripe Data A set of data for each track read

U The identifier of the following track data (must be
‘01’, ‘02’, ‘03’, ‘81’, ‘82’, or ‘83’)

1

Len Length of the data read from this track or length of
enciphered track data

1

Data Track Data read from the specified track or
enciphered data.

var.

Response Code Response Code 2

Table 26: Enciphered response to Read Magnetic Stripe command

Field Value Length

Seed Any, in plain text 4

Enciphered data Enciphered using KSESCDP

 Random number Any 4

 Track data Data read from the track var

 Padding ’80…’, pad to n × 8 byte var

Response Code Response Code 2

6.1.1.6 The Magnetic Stripe Reader must be capable of
generating the Response Codes to the Read
Magnetic Stripe command as defined in Table
27.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

44

Table 27: Response Codes to Read Magnetic Stripe command

Response Code Description

‘FF20’ Read Error

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

6.1.2 Write Magnetic Stripe
The Write Magnetic Stripe is an optional command used to
write the entire track data to ISO track 3. (This command may
be required by some proprietary applications).

6.1.2.1 The Write Magnetic Stripe command must
conform to the format defined in Table 28.

6.1.2.2 Secure Cryptographic Device requirement: The
data of the track must be deciphered using the
KSESCDP of the PSAM that initiated the Read
Magnetic Stripe command.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

45

Table 28: Write Magnetic Stripe command

Field Value Length

Destination Address '0201' 2

Source Address Any 2

Message Type '41' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0007’ + Len 2

Timer Flag ‘00’ = Not Timed
‘80’ = Timed

1

Time Time-out value in milliseconds 4

u Identifier of the track to be written (must be ‘03’, or
‘83’)

1

Len Length of track data to be written or length of
enciphered track data

1

Message Data Enciphered track data or track data to be written to
the magnetic stripe

Len

The parameter track u is the identifier of the track to write, as
shown in Table 24. The data must be written to track 3 when
the user swipes the card. If no card is swiped within the time-
out period allowed, a response of “timeout” is returned. Clear
text data are given in ASCII format. Enciphered data are
formatted as specified in Table 26 and shall be deciphered
before written.

The data is written to the card is in the format specified in
ISO/IEC 4909: 2006 “Identification cards – Financial
transaction cards – Magnetic stripe data content for track 3”.

Note: After a Write Magnetic Stripe function has been
performed; the buffer containing the written data must be
cleared prior to performing a subsequent read operation.
Closing and re-opening the Magnetic Stripe Reader may clear
the buffer.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

46

For example:

BYTES DELIVERED BY APPLICATION => BYTES TO CARD

31 32 33 34 0D 37 38 35 => B1 23 4D 78 5F xx

 ^ ^ ^LRC

 STX ETX

Figure 4: example of bytes written to Track 3

6.1.2.3 The Write Magnetic Stripe response must
conform to the format defined in Table 29.

Table 29: Response to Write Magnetic Stripe command

Field Value Length

Destination Address Any 2

Source Address '0201' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0002’ 2

Response Code Response Code 2

6.1.2.4 The Magnetic stripe Reader must be capable of
generating the Response Codes to the Write
Magnetic Stripe command as defined in Table
30.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

47

Table 30: Response Codes to Write Magnetic Stripe command

Response Code Description

'FF20' Unrecoverable Transmission error between reader and magnetic
stripe

'FF21' Output buffer overflow

'FF22' Write operation failed

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

6.2 Commands sent to the Processor Card Reader
The interface between the Processor Card Reader and the ICC
is a standard command-response protocol as defined in
reference 3, ISO/IEC 7816-4 and reference 6, EMV, Book II,
section 2.1. The technical interface must be as defined in
reference 2, ISO/IEC 7816-3 and reference 6, EMV – Book I.

The Processor Card Reader is responsible for performing the
required formatting between the command-response protocol
and the Terminal Message formats used among terminal
components. Commands are sent to the processor card from
other terminal components using the ICC command, which
contains within it the command APDU to be delivered to the
card.

The response APDU from the processor card must then be
sent to the handler that originated the command, embedded

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

48

within a Terminal response message.

Note that the Response Code contained in the response
message only reflects whether the receiving handler was able
to successfully process the ICC command, forward the C-APDU
to the processor card, and receive a response. If a response is
received from the processor card, then the Processor Card
Reader has been able to successfully process the command
message. The Status Words in the reply from the processor
card will be contained in the Message Data field returned in
the response to the ICC command. Figure 5 provides an
illustration of the message flows occurring between the
Processor Card Reader and the ICC.

6.2.1 Message Handling
Figure 5 illustrates the role of the Processor Card Reader in
transmitting messages between the ICC and the terminal.
Figure 6 shows the detailed message translation that must be
performed.

Figure 5: Handler to Processor Card Interface

6.2.1.1 If the interface to the Processor Card is T=0, the
Get Response must be implemented as part of
the Handler to deal with the requirements for
case 2 and case 4 commands. (Please see
reference 3, ISO/IEC 7816-4 and reference 6,
EMV for further information on T=0
requirements).

6.2.2 Enciphered Messages
The interface to the Processor Card has been extended to
handle enciphered data transfer. Commands can be partially
(MT = ‘47’) and fully encrypted (MT = ‘48’) commands.

6.2.2.1 The Message Type must be used to show
whether or not the command is partially (MT =
‘47’) and fully encrypted (MT = ‘48’) enciphered.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

49

6.2.2.2 The sub-handler address of the destination
controls whether or not the response shall be
encrypted. The setting of the most significant
bit of the destination sub-handler address
requests an enciphered response to be
generated.

Figure 6: Processor Card Message Translation

6.2.3 ICC Command/Response
The ICC command is used to send a command APDU to an IC
card.

Processor Card
Reader CardRouter

DAD SAD MT IDTHREAD LDATA C-APDU
0202 source of

ICC
command

‘42’ ‘nn’ DATA
length

CLA INS P1P2 Lc DATA Le

CARD-H must keep trace of the inbound
message, and extract/ forward the C-

APDU (which should fit given
application command specs)

Card generates an
R-APDU that fits given
application command

response specs

C-APDU
CLA INS P1P2 Lc DATA Le

 CARD-H must construct an ICC Response, using retained data
from the inbound message, inverting the SAD and DAD, and
containing the entire R-APDU received from the Card.

Note : The received R-APDU may contain no Data, in which
case only the SW1SW2 is forwarded

 The Processor Card Reader adds its RC as trailer

R-APDU
DATA SW1SW2

DAD SAD MT IDTHREAD LDATA DATA
Retained source
of ICC command

0202 ‘FF’ ‘nn’ DATA
length

RC determined
by CARD-H

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

50

6.2.3.1 An ICC command must conform to the format
defined in Table 31.

Table 31: ICC command

Field Value Length

Destination Address '0202' 2

Source Address Any 2

Message Type '42' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA Length of the Card Command 2

Card Command C-APDU to be sent to the IC card LDATA

6.2.3.2 An ICC response must conform to the format
defined in Table 32.

6.2.3.3 SCD Requirement: The response data must be
enciphered using the KSESCDP of the PSAM that
initiated the ICC command.

6.2.3.4 When constructing a response message to
another Handler, the Processor Card Reader
must use the source address and sub-address of
the original request message as the destination
address and sub-address of the response, set
the Message Type to 'FF', and include the
Thread Identifier from the original request
message.

6.2.3.5 The Processor Card Reader must return the
Response Code of “successful operation” if the
Handler was able to deliver the C- APDU to the
card successfully and receive a response.

6.2.3.6 The Processor Card Reader must return the
appropriate Response Code if it is unable to
deliver the C-APDU to the IC card or does not
get a response.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

51

Table 32: Response to ICC command

Field Value Length

Destination Address Any 2

Source Address '0202' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA Length of the Card Response + ‘0002’ 2

Card Response Complete R-APDU from card, including the Status
Words

var.

Response Code Response Code 2

6.2.3.7 The Response Codes applicable to the ICC
command are defined in Table 33.

Table 33: Response Codes to ICC command

Response Code Description

'FF23' No response from card

'FF24' No card in reader

'FF26' Card buffer overflow

'FF28' Response has no status words

'FF29' Invalid buffer

'FF2A' Other card error

'FF2B’ Card partially in reader

'FFF3' Handler Error: generic message that an unspecified error
has occurred.

'FFF5' Handler busy: the Handler received the message but is
unable to process it at this moment. The requesting Handler
must try again later

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

52

Response Code Description

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the
requested function.

'FFF7' Handler must be opened: the Handler is not in open status
and therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a
command or an associated data set that was unrecognized
or unsupported.

6.2.4 ICC Power-On
The ICC Power-On command is used to apply power to the
processor card and execute the ‘card reset’ function. The
Answer to Reset (ATR) message must be returned in the
Message Data field.

6.2.4.1 The ICC Power-On command must conform to
the format defined in Table 34.

Table 34: ICC Power-On command

Field Value Length

Destination Address '0202' 2

Source Address Any 2

Message Type '43' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0000' 2

6.2.4.2 The ICC Power-On response must conform to
the format defined in Table 35.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

53

Table 35: Response to ICC Power-On command

Field Value Length

Destination Address Any 2

Source Address '0202' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA Length of the ATR + ‘0002’ 2

ATR ATR from IC Card var.

Response Code Response Code 2

6.2.4.3 The Response Codes applicable to the ICC
Power-On command are defined in Table 36.

Table 36: Response Codes to ICC Power-On command

Response Code Description

'FF23' No response from card

'FF24' No card in reader

'FF2A' Other card error

'FF2B’ Card partially in reader

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

54

Response Code Description

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

6.2.5 ICC Power-Off
The ICC Power-Off command is used when a transaction
involving an IC card has been completed. Use of this command
may additionally result in the ejection of the IC card in
terminals where this feature is warranted.

6.2.5.1 The ICC Power-Off command must conform to
the format defined in Table 37.

Table 37: ICC Power-Off command

Field Value Length

Destination Address '0202' 2

Source Address Any 2

Message Type '44' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0000' 2

6.2.5.2 The ICC Power-Off response must conform to
the format defined in Table 38.

Table 38: Response to ICC Power-Off command

Field Value Length

Destination Address Any 2

Source Address '0202' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

55

LDATA '0002' 2

Response Code Response Code 2

6.2.5.3 The Response Codes applicable to the ICC
Power-Off command are defined in Table 39.

Table 39: Response Codes to ICC Power-Off command

Response Code Description

'FF24' No card in reader

'FF2B’ Card partially in reader

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

6.2.6 ICC Query
The ICC Query command is issued to the Processor Card
Reader in order to determine if a card is physically present in
the IC reader.

6.2.6.1 The ICC Query command must conform to the
format defined in Table 40.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

56

Table 40: ICC Query command

Field Value Length

Destination Address '0202' 2

Source Address Any 2

Message Type '45' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0000' 2

6.2.6.2 The ICC Query response must conform to the
format defined in Table 41.

6.2.6.3 The Handler must return the appropriate
Response Code if the ICC Query if no card is
present.

Table 41: Response to ICC Query command

Field Value Length

Destination Address Any 2

Source Address '0202' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

6.2.6.4 The Response Codes applicable to the ICC
Query command are defined in Table 42.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

57

Table 42: Response Codes to ICC Query command

Response Code Description

'FF24' No card in reader

'FF2B’ Card partially in reader

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

6.2.7 Verify Offline PIN
The Verify Offline PIN command is specific to the PIN Pad
processing described in section 14.4. Terminals that do not
support the PIN Pad Processing do not need to support this
command.

The Verify Offline PIN command is an authenticated message,
which is used to send a command APDU to the card while the
Secure Cryptographic Device (SCD) is in PIN Entry State. The C-
APDU is encrypted and embedded in a Verify Offline PIN
message with MAC, which is sent to the Processor Card
Reader. The command has been updated to ensure that no
sensitive are transmitted unencrypted and that data are not
encrypted more than once. The format of the command does
thus differ, dependent on whether or not the PIN is plaintext
or enciphered. Enciphered PIN will use MT =’46’ and plaintext
PIN will use MT = ‘42’. Selecting the new mode in the PSAM is
performed during the configuration setup.

The Processor Card Reader authenticates the message and
decrypts the C-APDU. The subsequent processing is the same
as that for the standard ICC Command message. The response

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

58

to the Verify Offline PIN command also contains a MAC. The
response may be enciphered or plaintext depending on the
sub handler address.

6.2.7.1 The Verify Offline PIN enciphered command
must conform to the format defined in Table
43.

Table 43: Verify Offline PIN enciphered, command

Field Value Length

Destination Address '0202' 2

Source Address Any 2

Message Type '46' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA Length of [C-APDU] 2

[C-APDU] PIN block enciphered using public RSA key var.

MACVOPE MAC on Dest. Address – [C-APDU], computed using
KSESMAC

8

6.2.7.2 The Verify Offline PIN plaintext command must
conform to the format defined in Table 44.

Table 44: Verify Offline PIN plaintext, command

Field Value Length

Destination Address '0202' / ‘0282’ 2

Source Address Any 2

Message Type '47' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

FID ‘01’, Format Identifier 1

LHDR Length of (plaintext) Header 2

HDR Plaintext header var.

LENCHR Length of encrypted data 2

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

59

Field Value Length

ENC(KSESDATA)[Data] Enc(KSESDATA)[RND(8]||Enc(KSESPIN)[PIN block]] var.

LTRAI Length of trailer 2

Trailer Optional trailer Var.

MACVOPP MAC on Dest. Address –Trailer, computed using
KSESMAC

8

6.2.7.3 The Verify Offline PIN plaintext response must
conform to the format defined in Table 45.

6.2.7.4 The Secure Cryptographic Device must verify
the MACVOP in the command using the KSESMAC,
and decrypt the C-APDU using the KSESDATA.

6.2.7.5 When constructing a response message to
another Handler, the Processor Card Reader
must use the source address and sub-address of
the original request message as the destination
address and sub-address of the response, set
the Message Type to 'FF', and include the
Thread Identifier from the original request
message.

6.2.7.6 The Processor Card Reader must return the
Response Code of “successful operation” if the
Handler was able to deliver the C- APDU to the
card successfully and receive a response.

6.2.7.7 The Processor Card Reader must return the
appropriate Response Code if it is unable to
deliver the C-APDU to the IC card or does not
get a response.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

60

Table 45: Plaintext response to Verify Offline PIN command

Field Value Length

Destination Address Any 2

Source Address '0202' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '000A' + length of Card response 2

Card Response Complete R-APDU from card (including SW1-SW2) var.

MACRVOP MAC over Card Response || MACVOPx (from the
command), computed using KSESMAC

8

Response Code Response Code 2

Table 46: Enciphered response to Verify Offline PIN command

Field Value Length

Destination Address Any 2

Source Address '0282' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘001A’ + Length of Enciphered Card Response 2

Seed 4

Enciphered Response Enc(KSESCDP)[RND(4] || R-APDU || ’80…’] var.

MACRVOP MAC over Seed || Enciphered Response ||
MACVOPx (from the command), computed using
KSESMAC

8

Response Code Response Code 2

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

61

6.2.7.8 In addition to the Response Codes defined for
the ICC command (in Table 33), the Response
Codes defined in Table 47 are applicable to the
Verify Offline PIN Command.

Table 47: Response Codes to Verify Offline PIN command

Response Code Description

‘FF82’ Authentication Error (MAC validation failed)

‘FF87’ Secure Cryptographic Device not in PIN Entry State

6.3 Commands sent to Memory Card Reader
The interface to memory cards is proprietary and outside the
scope of this specification. In addition to the common handler
commands defined in Section 4.4, it is expected that the
commands listed in Table 48 with a possible destination
address of ‘0203’ will also be used for the Memory Card
Reader.

6.4 Commands sent to the Contactless Card
Reader

The interface between the Contactless Card Reader and the
ICC will use the protocol defined in Reference 4, EMV
Contactless. The protocol is outside the scope of this
specification.

In addition to the common handler commands defined in
Section 4.4, the commands listed in Table 48 with destination
address of ‘0204’ will also be used for the contactless card
reader.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

62

6.5 Summary

Table 48: Card Handler commands

Destination Address Source

Address

Message Type Description

'0201' Any '40' Read Magnetic Stripe

'0201' Any '41' Write Magnetic Stripe

'0202','0203',’0204’,’
00xx’

Any '42' ICC Command

'0202','0203',’0204’,’
00xx’

Any '43' ICC Power-On

'0202','0203',’0204’,’
00xx’

Any '44’ ICC Power-Off

'0202','0203',’00xx’ Any '45’ ICC Query

‘0202’,’0204’ Any ‘46’ Verify Offline PIN

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

63

7. The User Interface Handler
The User Interface Handler is responsible for managing the
interface to all user (customer) related equipment and
peripherals, which may include the customer display,
customer printer, PIN pad, and customer keypad.

7.1 Messages sent to the User Interface Handler
In addition to the common Handler commands provided in
Section 4.4, the User Interface Handler must support the
command set outlined in this section.

7.1.1 Display Message
The Display Message command is used to display a pre-
defined text message on a display unit (either that of the User
Interface Handler or the Merchant Application Handler).

7.1.1.1 The Display Message command must conform
to the format defined in Table 49.

7.1.1.2 PIN Pad requirement: If the Display Message
command is sent to the User Interface Display
Handler while the Secure Cryptographic Device
(SCD) is in PIN Entry State, the command must
include the SPMAC. The SCD must authenticate
the message using the KSESMAC of the PSAM
that initiated the PIN Entry.

Table 49: Display Message command

Field Value Length

Destination Address '0304' or ‘0404’ 2

Source Address Any 2

Message Type '61’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0001’ or ‘0009’ 2

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

64

Field Value Length

Message Code Message Code to be translated into text by
receiving handler

1

SPMAC MAC on Destination Address – Message Code,
computed using the KSESMAC.

0 or 8

7.1.1.3 The receiving Handler must convert the 1-byte
message code contained in the Display Message
command into a predefined text as listed in
Table 177. The terminal should use the defined
message or the equivalent in the preferred
language.

Message Codes ‘01’ – ‘3F’ are defined in
reference 6, EMV and are included in Table 177
only for completeness. In order to ensure
compliance with EMV for use of that range, the
terminal developer should reference the EMV
specifications.

7.1.1.4 The Display Message response must conform to
the format defined in Table 50.

Table 50: Response to Display Message command

Field Value Length

Destination Address Any 2

Source Address '0304' or ‘0404’ 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

7.1.1.5 The Response Codes applicable to the Display
Message command are defined in Table 51

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

65

Table 51: Response Codes to Display Message command

Response Code Description

‘FF34' Unknown Message Code

‘FF82’ Authentication Error (MAC validation failed)

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

7.1.2 Print Message
The Print Message command is used to send pre-defined text
messages to printer devices.

7.1.2.1 The Print Message command must conform to
the format defined in Table 52.

7.1.2.2 The Print Message Code field must contain a 1-
byte code as defined in Table 177, which the
receiving Handler must interpret and convert to
a predefined text message before being
transferred to an attached printer.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

66

Table 52: Print Message command

Field Value Length

Destination Address '0302' or ‘0402’ 2

Source Address Any 2

Message Type '63' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0001' 2

Message Code Print Message Code 1

7.1.2.3 The Print Message response must conform to
the format defined in Table 53.

Table 53: Response to Print Message command

Field Value Length

Destination Address Any 2

Source Address '0302' or ‘0402’ 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

7.1.2.4 The Response Codes applicable to the Print
Message command are defined in Table 54.

Table 54: Response Codes to Print Message command

Response Code Description

'FF31' Printer out of paper

'FF32' Printer has signalled an error

'FF33' Printer does not appear to be connected and online

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

67

Response Code Description

‘FF34' Unknown Message Code

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

7.1.3 Confirm Amount
When the User Interface Handler receives this command, it
must perform any necessary processing to display and confirm
the transaction amount. The particular steps performed will be
proprietary and environment dependent.

7.1.3.1 The Confirm Amount command must conform
to the format defined in Table 55.

7.1.3.2 PIN Pad requirement: If the Confirm Amount
command is sent to the User Interface Handler
while the Secure Cryptographic Device (SCD) is
in PIN Entry State, the command must include
the SPMAC. The SCD must authenticate the
message using the KSESMAC of the PSAM that
initiated the PIN Entry.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

68

Table 55: Confirm Amount command

Field Value Length

Destination Address '0300' (User Interface Handler) 2

Source Address Any 2

Message Type '60’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '000C' or ’0014’ 2

Timer Flag ‘00’ = Not Timed
‘80’ = Timed

1

Time Time-out value in milliseconds 4

Amount Transaction Amount 4

CURR Currency Code and exponent 3

SPMAC MAC on Dest. Address – CURR, computed using the
KSESMAC.

0 or 8

7.1.3.3 The Confirm Amount response must conform to
the format defined in Table 56.

7.1.3.4 PIN Pad requirement: If the Confirm Amount
command is sent to the User Interface Handler
while the Secure Cryptographic Device (SCD) is
in PIN Entry State, the response must include
the SPMAC, R, generated by the SCD using the
KSESMAC of the PSAM that initiated the PIN
entry.

Table 56: Response to Confirm Amount command

Field Value Length

Destination Address Any 2

Source Address '0300' (User Interface Handler) 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

69

Field Value Length

LDATA '0003' or ‘000B’ 2

Amount Confirmed
Indicator

'00' = Confirmed
'01' = Not Confirmed
‘02’ = Cancelled by user

1

SPMAC, R MAC over Amount Confirmed Indicator || SPMAC

(from the command).
0 or 8

Response Code Response Code 2

7.1.3.5 The Response Codes applicable to the Confirm
Amount command are defined in Table 57.

Table 57: Response Codes to Confirm Amount command

Response Code Description

‘FF82’ Authentication Error (MAC validation failed)

‘FFF2’ Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

‘FFF3’ Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

7.1.4 Purge Print Buffer

The Purge Print Buffer command is used to print and clear
data that may be present in a print buffer.

7.1.4.1 The Purge Print Buffer command must conform
to the format defined in Table 58.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

70

Table 58: Purge Print Buffer command

Field Value Length

Destination Address '0302' 2

Source Address Any 2

Message Type '64' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0000' 2

7.1.4.2 The Purge Print Buffer response must conform
to the format defined in Table 59.

Table 59: Response to Purge Print Buffer command

Field Value Length

Destination Address Any 2

Source Address '0302' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

7.1.4.3 The Response Codes applicable to the Purge
Print Buffer command are defined in Table 60.

Table 60: Response Codes to Purge Print Buffer command

Response Code Description

'FF30' Out of border

'FF31' Printer out of paper

'FF32' Printer has signalled an error

'FF33' Printer does not appear to be connected

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

71

Response Code Description

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

7.1.5 Get Amount
The User Interface Handler may also be able to receive and
process the Get Amount and Get Amount Enhanced messages,
defined in sections 8.1.1 and 8.1.2.

7.1.5.1 PIN Pad requirement: If a Get Amount
command is sent to the User Interface Handler
while the Secure Cryptographic Device (SCD) is
in PIN Entry State, the command must include
the SPMAC. The SCD must authenticate the
message using the KSESMAC of the PSAM that
initiated the PIN Entry.

7.1.6 Funds Available
The User Interface Handler may also be able to receive and
process the Funds Available message, defined in section 8.1.4.

7.2 PIN Pad Handler
This section defines requirements for commands sent to the
User Interface.

All Secure Cryptographic Device's supporting PKC shall support
the commands Get Key Check Value, Get Public Key Record
and Verify PSAM Public Key Certificate (Submit Initial key).

The terminal’s Secure Cryptographic Device - PIN Pad or
separate Secure Cryptographic Device - needs to support these
commands.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

72

7.2.1 Get Key Check Value

7.2.1.1 The Get Key Check Value command must
conform to the format defined in Table 61.

Table 61: Get Key Check Value command

Field Value Length

Destination Address '0301' 2

Source Address Any 2

Message Type '65' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0012’ + NVKP 2

RIDPSAM RID used by the PSAM Creator 5

IDPSAMCREATOR Identifier assigned to the PSAM Creator by the
owner of the RID

4

IDPSAM Identifier assigned by the PSAM Creator to the
PSAM.

4

NVKP Number of CA PP Public Keys contained in the
PSAM

1

VKPCA,PP Key versions of the CA PP Public Keys contained in
the PSAM

NVKP

CHALLENGEPSAM Any non-repeating or random 4-byte value
generated by the PSAM

4

7.2.1.2 The Secure Cryptographic Device/PIN Pad must
verify that one of the public key version
numbers (VKPCA, PP) listed in the Get Key Check
Value Command (to be used by the PSAM to
verify the certificates) corresponds to the
version number of the public key that created
the highest level certificate in a public key
certificate chain available to the Secure
Cryptographic Device/PIN Pad.

From the intersection of VKPCA, PPs supported by
both the PSAM and the SCD/PIN pad, the
SCD/PIN pad shall select the version of the

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

73

VKPCA, PP having the lowest value of the VKPCA, PP
key version.

If there is not match then an error response
must be returned with the appropriate
response code.

7.2.1.3 The Get Key Check Value response must
conform to the format defined in Table 62.

Table 62: Response to Get Key Check Value command

Field Value Length

Destination Address Any 2

Source Address '0301' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0013' + NVKP 2

IDPPCREATOR Identifier of the PIN Pad Creator 4

IDPP Identifier assigned to the SCD/PIN Pad by the PIN
Pad Creator

4

NVKP Number of CA PSAM Public Keys contained in the
SCD/PIN Pad

1

VKPCA, PSAM Key versions of the CA PSAM Public Keys contained
in the PIN Pad

NVKP

VKPCA, PP Key version of the CA PP Public Key that must be
used to verify the PIN Pad Creator Certificate.

1

CHALLENGEPP Any non-repeating or random 4-byte value
generated by the SCD/PIN Pad

4

KCVPP Key Check Value 3

Response Code Response Code 2

7.2.1.4 The Response Codes applicable to the Get Key
Check Value command are defined in Table 63.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

74

7.2.1.5 To enable the synchronization process to
continue if the Response code is 'FF80', the
response to the Get Key Check Value command
shall contain all data elements defined in Table
62.

Table 63: Response Codes to Get Key Check Value command

Response Code Description

‘FF80’ No KCV available, KSES not present

‘FF90’ RSA key mismatch. VKP not recognized

‘FFF3’ Handler Error

‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

7.2.2 Get PIN Pad Public Key Record

7.2.2.1 The Get PIN Pad Public Key Record command
must conform to the format defined in Table
64.

Table 64: Get PIN Pad Public Key Record command

Field Value Length

Destination Address '0301' 2

Source Address Any 2

Message Type '67' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0001’ 2

Format Code ‘C2’ = PKCPPC, ‘C4’ = PKCPP 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

75

7.2.2.2 The Get PIN Pad public Key Record response
must conform to the format defined in Table
65.

Table 65: Response to Get PIN Pad Public Key Record command

Field Value Length

Destination Address Any 2

Source Address '0301' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0002’ + Length of RecordPKEY 2

RecordPKEY Record containing tags, certificate (PKCPPC/PKCPP)
and remainder (if present)

See Table 66 and Table 67 for the formats of the
PIN Pad Creator and PIN PAD public key records.

Var.

Response Code Response Code 2

Table 66: Contents of PIN Pad Creator Certificate Record

Description Data element Mandatory or
conditional

Length (bytes)

Record Tag ‘85’ M 1

Data length Sum of lengths of
succeeding fields

M 1

Certification Authority Key
version

VKPCA M 1

Length of CA Public Key
Modulus

LPKMCA, PP M 1

PIN Pad Creator Public Key
Certificate (enciphered)

PKCPPC M LPKMCA, PP

Rightmost bytes of the PIN
Pad Creator Key Modulus

PKRPPC C Maximum (0,
LPKMPPC + 36 –
LPKMCA, PP)

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

76

Table 67: Contents of PIN Pad Certificate Record

Description Data element Mandatory or
conditional

Length (bytes)

Record Tag ‘85’ M 1

Data length Sum of lengths of
succeeding fields

M 1

Length of PIN Pad Creator
Public Key Modulus

LPKMPPC M 1

PIN Pad Public Key
Certificate (enciphered)

PKCPP M LPKMPPC

Rightmost bytes of the PIN
Pad Key Modulus

PKRPP C Maximum (0,
LPKMPP + 40 –
LPKMPPC)

7.2.2.3 The Response Codes applicable to the Get PIN
Pad Public Key Record command are defined in
Table 68.

Table 68: Response Codes to Get PIN Pad Public Key Record command

Response Code Description

‘FF89’ Record not found

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized

‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

7.2.3 Verify PSAM Public Key Certificate

7.2.3.1 The Verify PSAM Public Key Certificate

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

77

command must conform to the format defined
in Table 69.

Table 69: Verify PSAM Public Key Certificate Command (PKCACQ)

Field Value Length

Destination Address '0301' 2

Source Address Any 2

Message Type '66' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA Variable 2

Format Code ’A2’ = PKCACQ

‘A4’ = PKCPSAM

1

VKPCA, PSAM Key version of the CA PSAM Public Key 1

LPKM Length of the modulus of the key that signed the
certificate: LPKMCA, PSAM or LPKMACQ as appropriate.

1

PKCACQ/PSAM Public Key Certificate being sent for verification LPKMCA,

PSAM or
LPKMACQ

PKRACQ/PSAM Rightmost bytes of Public Key Modulus being sent
for verification

For the acquirer certificate, the length is the
maximum of 0 or (LPKMACQ + 41 – LPKMCA,PSAM.)

For the PSAM certificate, the length is the
maximum of 0 or (LPKMPSAM + 45 – LPKMACQ.)

May be 0

7.2.3.2 The Verify PSAM Public Key Certificate response
must conform to the format defined in Table
70.

7.2.3.3 The PIN Pad must return the appropriate
Response Code if the Verify PSAM Public Key
Certificate command has not been processed
correctly.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

78

Table 70: Response to Verify PSAM Public Key Certificate command

Field Value Length

Destination Address Any 2

Source Address '0301' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

7.2.3.4 The Response Codes applicable to the Verify
PSAM Public Key Certificate command are
defined in Table 71.

Table 71: Response Codes to Verify PSAM Public Key Certificate command

Response Code Description

‘FF8C’ Certificate Error

‘FF8D’ Hash algorithm not supported

‘FF8E’ PK Algorithm not supported

‘FF8F’ Hash result invalid

‘FF90’ RSA key mismatch. VKP not recognized

‘FF91’ Certificate format error

‘FF92’ Certificate expired

‘FF93’ Certificate ID mismatch

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized

‘FFF5’ Handler busy

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

79

Response Code Description

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

7.2.4 Submit Initial Key

7.2.4.1 The Submit Initial Key command must conform
to the format defined in Table 72.

7.2.4.2 In order to generate the PS signature, the PSAM
must perform the following steps.

1. Compute the “Hash Result” by using the
SHA-1 algorithm on the data defined in
Table 76.

Note that the PIN Pad data (PIN Pad
Identification and CHALLENGEPP) are
retained from the response to the Get Key
Check Value at the beginning of the
synchronization sequence.

2. Generate a digital signature “DS” on the
data shown in Table 75, using the PSAM
private key.

3. Split the digital signature into two
components: a 96-byte DS1 and a remainder
DSREM.

DS = DS1 || DSREM

4. Generate the DS2 by padding the DSREM with
sufficient bytes of binary zeros to create a
96-byte string.

DS2 = DSREM || ’00…00’

5. Apply the Padding function defined in
section 14.7.8 to each of the two DS
components, using L=LPKMPP.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

80

PDSi = PAD(DSi)

6. Encrypt the results using the PIN Pad’s
public key, to generate the two signatures,
PS1 and PS2.

PSi := RSAencipher(PKPP)[PDSi]

7. The result (PS = PS1 || PS2) is sent to the PIN
Pad in the Submit Initial Key command.

Table 72: Submit Initial Key command

Field Value Length

Destination Address '0301' 2

Source Address '00pp' where pp is the sub-address assigned to the
PSAM

2

Message Type '68' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘000D’ + 2*LPKMPP (length of the modulus of the
PIN Pad Public Key)

2

RIDPSAM RID used by the PSAM Creator 5

IDPSAMCREATOR Unique identifier of the PSAM Creator 4

IDPSAM Unique identifier of the PSAM 4

PS PS1 || PS2,, Enciphered digital signature of the
PSAM

2*LPKMPP

7.2.4.3 The Submit Initial Key response must conform
to the format defined in Table 73.

7.2.4.4 In order to decrypt and verify the encrypted
digital signature (PS) and recover the Initial
Session Key (KSESINIT), the PIN Pad must
perform the following steps.

1. Recover the padded digital signatures PDS1
and PDS2 by decrypting each of the PS
components, using its own private key.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

81

PDSi := RSAdecipher(SKPP)[PSi]

2. Recover each value DSi from PDSi as defined
in Section 14.7.8.

3. Reconstruct the signature DS by
concatenating DS1 and DS2, and taking the
first LPKMPSAM bytes.

DS := DS1 || DSREM = LPKMPSAM bytes (DS1 ||
DS2)

4. Recover the signed data in Table 75 using
the PSAM’s public key to verify the DS.

5. Validate the signed data to ensure that the
header, format code and trailer all contain
valid data as specified in Table 75.

6. Construct the DSHash as specified in Table
76, and perform the SHA-1 algorithm. The
signature is verified by comparing the result
to the Hash Result in the signed data
previously recovered.

HashResult:= SHA-1(DSHash).

Note that the data from the PSAM (PSAM
Identification and CHALLENGEPSAM) are
retained from the Get Key Check Value
command received at the beginning of the
synchronization sequence.

7. If all the above checks are successful then
KSESINIT is accepted and synchronization is
complete.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

82

Table 73: Response to Submit Initial Key command

Field Value Length

Destination Address '00pp' where pp is the sub-address assigned to the
PSAM

2

Source Address '0301' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0005' 2

KCVPP Key Check Value derived as specified in Table 79
using the KSESINIT.

3

Response Code Response Code 2

7.2.4.5 The Response Codes applicable to the Submit
Initial Key command are defined in Table 74.

Table 74: Response Codes to Submit Initial Key command

Response Code Description

‘FF83’ PSAM Identifier not recognized

‘FF8A’ Signature Error

‘FF8B’ Hash Error

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized

‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

83

Table 75: Format of Data Recovered from DS

Field Content/Source Length (bytes)

Header ‘6A’ 1

Format code ‘89’ 1

ALGH Code for the algorithm used to produce the hash (‘01’ for
SHA-1)

1

KSESINIT Initial Session Key produced by PSAM 16

Pad Pattern Successive bytes containing ‘BB’ LPKMPSAM – 40

Hash Result Hash of signed data, see Table 76 20

Trailer ‘BC’ 1

Table 76: Contents of the DS Hash

Field Content/Source Length (bytes)

Format code ‘89' 1

ALGH Code for the algorithm used to produce the hash (‘01’ for
SHA-1)

1

KSESINIT Initial Session Key produced by PSAM 16

Pad Pattern Successive bytes containing ‘BB’ LPKMPSAM – 40

PIN Pad
Identification

IDPPCREATOR Identifies the PP Creator 4

IDPP Identifies the SCD/PIN Pad 4

CHALLENGEPP Challenge from SCD/PIN Pad 4

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

84

Field Content/Source Length (bytes)

PSAM Identification

RIDPSAM RID used by the PSAM Creator 5

IDPSAMCREATOR Identifier of the PSAM Creator 4

IDPSAM Identifier of the PSAM 4

CHALLENGEPSAM Challenge from the PSAM 4

7.2.5 Initiate PIN Entry

7.2.5.1 The Initiate PIN Entry command must conform
to the format defined in Table 77.

Table 77: Initiate PIN Entry command

Field Value Length

Destination Address '0301' 2

Source Address Any 2

Message Type '69' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0023’ 2

PIN Pad Identification

IDPPCREATOR Unique identifier of the PIN Pad Creator 4

IDPP Unique identifier of the PIN Pad 4

PSAM Identification

RIDPSAM RID used by the PSAM Creator 5

IDPSAMCREATOR Unique identifier of the PSAM Creator 4

IDPSAM Unique identifier of the PSAM 4

KCVPSAM Current Key Check Value calculated by the PSAM 3

Min PIN Digits Minimum number of PIN digits (’04’ – ‘0C’) 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

85

Field Value Length

Max PIN Digits Maximum number of PIN digits (’04’ – ‘0C’) 1

Number of PIN entries
left

‘x0’ – ‘xE’ and ‘xF’.

The high-order nibble (as indicated by the ‘x’) is
reserved for proprietary coding. The low-order
nibble indicates the number of PIN entry attempts
that remain. An ‘F’ in the low-order nibble
indicates that this information shall not be
displayed.

1

MACIPE MAC on the preceding data elements (Destination
Address – Number of PIN Entries left) computed
using KSESMAC

8

7.2.5.2 The Initiate PIN Entry response must conform
to the format defined in Table 78.

7.2.5.3 Prior to generating or verifying the MACIPE in the
Initiate PIN Entry command, the PSAM and the
Secure Cryptographic Device must each derive a
new set of PIN session keys from the previous
set. A new Key Check Value (KCV) for the
Transaction Session Key (KSES) must also be
calculated. The algorithms for deriving the new
session keys, and for calculating the new check
value, are specified in Table 79. As part of this
derivation, each key (i.e. KSESNEW, KSESPIN,
KSESDATA, KSESCDP and KSESMAC) must have its
bytes adjusted for odd parity.

Note that the Initial Session Key (KSESINIT)
established during synchronization is only used
to derive the first set of PIN Session Keys, and
the KCVPP returned in the response to the
Submit Initial Key command.

Note: Each byte in a key with odd parity must
have an odd number of one-bits. Parity is
adjusted by changing the low order (rightmost)
bit. An example of a key without odd parity is
’11 22 33 44 55 66 77 88’. The same key
adjusted for odd parity is ’10 23 32 45 54 67 76
89’.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

86

Table 78: Response to Initiate PIN Entry command

Field Value Length

Destination Address Any 2

Source Address '0301' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '000A' 2

MACIPER MAC on the MACIPE from the command, computed
using KSESMAC

8

Response Code Response Code 2

Table 79: SCD Session Key Derivation

Key Value Length

KSESNEW DES3(KSESOLD)[DL] || DES3(KSESOLD)[DR] 16

 DL IDPP || 'F0 00 00 00' 8

 DR IDPP || '0F 00 00 00' 8

KCVNEW 3MSB{ DES3(KSESNEW)['00 00 00 00 00 00 00 00']} 3

KSESPIN DES3(KSESNEW)[DPL] || DES3(KSESNEW)[DPR] 16

 DPL 'FF FF 00 00 00 00 00 00' 16

 DPR 'F0 F0 00 00 00 00 00 00' 16

KSESMAC DES3(KSESNEW)[DML] || DES3(KSESNEW)[DMR] 16

 DML 'F0 0F 00 00 00 00 00 00' 16

 DMR '0F F0 00 00 00 00 00 00' 16

KSESDATA DES3(KSESNEW)[DDL] || DES3(KSESNEW)[DDR] 16

 DDL 'F0 F0 00 00 00 00 00 00' 16

 DDR '0F 0F 00 00 00 00 00 00' 16

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

87

Table 80: CDP Key Derivation

Key Value Length

KSESCDP DES3(KSESINI)[DLCDP] || DES3(KSESINI)[DRCDP] 16

 DLCDP IDPP ||'00 F0 00 00' 8

 DRCDP IDPP || '00 0F 00 00' 8

7.2.5.4 The Response Codes applicable to the Initiate
PIN Entry command are defined in Table 81.

Table 81: Response Codes to Initiate PIN Entry command

Response Code Description

‘FF81’ Wrong PIN Pad ID

‘FF82’ Authentication Error (MAC validation failed)

‘FF83’ PSAM Identifier not recognized

‘FF84’ Parameters out of range

‘FF85’ Key Check values not identical, synchronization necessary

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized

‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

7.2.6 Get PIN

7.2.6.1 The Get PIN command must conform to the
format defined in Table 82.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

88

Table 82: Get PIN command

Field Value Length

Destination Address '0301' 2

Source Address Any 2

Message Type '6A' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘000D’ 2

Timer Flag ‘00’ = Not Timed

‘80’ = Timed

1

Time Time-out value in milliseconds 4

MACGP MAC on the preceding data elements (Dest.
address – Time) computed using KSESMAC

8

Figure 7: PIN Block Format

Table 83: Definition of PIN block format

 Name Value

C Control field 4-bit binary control field. Shall be ('2')

N PIN length 4-bit binary number with permissible
values of '4' - 'C'

P PIN digit 4-bit binary number with permissible
values of '0' - '9'

P/F PIN/Filler Determined by PIN length

F Filler 4-bit binary number with value 'F'

7.2.6.3 The Get PIN response must conform with the
format defined in Table 84.

P/F P/F P/FP/F P/F P/F P/F P/FPPPPNC F F

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

89

Table 84: Response to Get PIN command

Field Value Length

Destination Address Any 2

Source Address '0301' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '001A' 2

Enc(KSESDATA)[Data] Data consisting of the following

 RND(8) Random Data 8

 Enc(KSESPIN)[PIN]] PIN block encrypted under KSESPIN transferred
concatenated with random number in
envelope encrypted under KSESDATA.

See Figure 8 and Table 83 for the format of
the PIN Block. No padding is included.

8

MACRGP MAC on ENC(KSESPIN) || MACGP (from the
command), computed using KSESMAC

8

Response Code Response Code 2

7.2.6.4 The PIN Pad must be capable of generating the
Response Codes to the Get PIN command as
defined in Table 85.

7.2.6.5 The plaintext PIN block format to be enciphered
must be formatted as shown in Figure 8 and as
specified in reference 6, EMV (section 2.4.12).

7.2.6.6 The Response Codes applicable to the Get PIN
command are defined in Table 85.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

90

Table 85: Response Codes to Get PIN command

Response Code Description

‘FF82’ Authentication Error (MAC validation failed)

‘FF86’ PIN not available

‘FF87’ Secure Cryptographic Device not in PIN Entry State

‘FFF2’ Time-out

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized

‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

7.2.7 Terminate PIN Entry

7.2.7.1 The Terminate PIN Entry command must
conform to the format defined in Table 86.

Table 86: Terminate PIN Entry command

Field Value Length

Destination Address '0301' 2

Source Address Any 2

Message Type '6C' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0015’ 2

PIN Pad Identification

IDPPCREATOR Unique identifier of the PIN Pad Creator 4

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

91

Field Value Length

IDPP Unique identifier of the PIN Pad 4

PSAM Identification

RIDPSAM RID used by the PSAM Creator 5

IDPSAMCREATOR Unique identifier of the PSAM Creator 4

IDPSAM Unique identifier of the PSAM 4

The Terminate PIN Entry response must conform to the format defined in

7.2.7.2 Table 87.

Table 87: Response to Terminate PIN Entry command

Field Value Length

Destination Address Any 2

Source Address '0301' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

7.2.7.3 The Response Codes applicable to the
Terminate PIN Entry command are defined in
Table 88.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

92

Table 88: Response Codes to Terminate PIN Entry command

Response Code Description

‘FF81’ Wrong PIN Pad ID

‘FF83’ PSAM Identifier not recognized

‘FF87’ Secure Cryptographic Device not in PIN Entry State

‘FF88’ Termination Failed

‘FFF3’ Handler Error

‘FFF4’ Handler must be initialized

‘FFF5’ Handler busy

‘FFF6’ Insufficient resources

‘FFF7’ Handler must be opened

‘FFFB’ Unsupported operation

7.3 Summary

Table 89: User Interface-Specific commands

Destination

Address

Source

Address

Message Type Description

'0300' Any '60' Confirm Amount

'0304' Any '61' Display a predefined message

'0302' Any '63' Print a predefined message

'0302' Any '64' Purge print buffer

'0300' Any '80' Get Amount

‘0300’ Any ‘82’ Funds Available

‘0301’ Any ‘65’ Get Key Check Value

‘0301’ Any ‘67’ Get PIN Pad Public Key Record

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

93

Destination

Address

Source

Address

Message Type Description

‘0301’ Any ‘66’ Verify PSAM Public Key Certificate

‘0301’ Any ‘68’ Submit Initial Key

‘0301’ Any ‘69’ Initiate PIN Entry

‘0301’ Any ‘6A’ Get PIN

‘0301’ Any ‘6C’ Terminate PIN Entry

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

94

8. The Merchant Application Handler
The Merchant Application Handler is responsible for managing
the interface to all merchant-related equipment and
peripherals, which may include the merchant display, printer,
or merchant keypad.

In addition to the common Handler commands provided in
Section 4.4, the Merchant Application Handler must support
the command set documented in this section. Additional
implementation specific functions may be performed by the
Merchant Application Handler, but are outside the scope of
this specification.

8.1 Messages sent to the Merchant Application
Handler

This section provides a list of additional commands that should
be accepted and processed by the Merchant Application
Handler.

The Get Amount commands consist of the basic Get Amount
command and the Get Amount Enhanced command in which
additional transaction specific data may be exchanged using
the Discretionary Data field. The definition of the Discretionary
Data may be different for command and response. Which
version of the Get Amount command to use is application
specific.

8.1.1 Get Amount

8.1.1.1 The Get Amount command must conform to
the format defined in Table 90.

Table 90: Get Amount command

Field Value Length

Destination Address ‘0300’ or '0400' 2

Source Address Any 2

Message Type '80' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0009' or ‘0011' 2

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

95

Field Value Length

Timer Flag ‘00’ = Not Timed
‘80’ = Timed

1

Time Time-out value in milliseconds 4

Display Message Code Code indicating the message to be displayed (see
Table 177)

‘00’ indicates that no message is to be displayed.

1

CURR Currency Code and exponent 3

SPMAC MAC on Destination Address – CURR, computed
using KSESMAC.

0 or 8

8.1.1.2 The Get Amount response must conform to the
format defined in Table 91.

8.1.1.3 If the currency code and exponent in the
command were zeros, then the Merchant
Application Handler must return the currency of
the amount in the response.

8.1.1.4 If the merchant application must display a
message to the merchant or the user for
amount entry, the Display Message Code
indicates the message to be displayed.

8.1.1.5 If the Merchant Application does not use a
display to request an amount entry, and the
command issued contained a Display Message
Code, but the amount was still successfully
entered, the Response Code ‘successfully
processed’ must only be returned in the case
where the merchant application automatically
replies to the command (for example, in a
vending machine).

8.1.1.6 If a display is used in the Get Amount process
and the Merchant Application Handler does not
recognize the Display Message Code, a
Response Code ‘FF34’ must be returned. In this
case the amount returned, if any, is not reliable.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

96

Table 91: Response to Get Amount command

Field Value Length

Destination Address Any 2

Source Address '0400' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ’0009’ 2

Transaction Amount Transaction Amount 4

CURR Currency Code and exponent 3

Response Code Response Code 2

8.1.1.7 The Response Codes applicable to the Get
Amount command are defined in Table 92.

Table 92: Response Codes to Get Amount command

Response Code Description

‘FF34’ Unknown Message Code

‘FF40’ Invalid Currency

‘FF41’ Invalid Currency Exponent

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time;
or merchant or cardholder requests a cancellation.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

97

Response Code Description

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

8.1.2 Get Amount Enhanced

8.1.2.1 The Get Amount Enhanced command must
conform to the format defined in Table 93.

Table 93: Get Amount Enhanced command

Field Value Length

Destination Address ‘0300’ or '0400' 2

Source Address Any 2

Message Type '80' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '000A’ or ‘0012' + Length of Discretionary Data 2

Timer Flag ‘00’ = Not Timed
‘80’ = Timed

1

Time Time-out value in milliseconds 4

Display Message Code Code indicating the message to be displayed (see
Table 177)

‘00’ indicates that no message is to be displayed.

1

CURR Currency Code and exponent 3

LENDD Length of Discretionary Data 2

Discretionary Data Discretionary Data variable

SPMAC MAC on preceding data elements [Destination
Address – Discretionary Data], computed using
KSESMAC.

0 or 8

8.1.2.2 If the Destination Address is '0300', the MAC

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

98

must be included.

8.1.2.3 The requirements for the Get Amount
command cover the Get Amount Enhanced
command, too.

8.1.2.4 The Get Amount Enhanced response must
conform to the format defined in Table 94.

Table 94: Response to Get Amount Enhanced command

Field Value Length

Destination Address Any 2

Source Address ‘0300’ or '0400' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ’000B’ or ‘0013’ + Length of Discretionary Data 2

Transaction Amount Transaction Amount 4

CURR Currency Code and exponent 3

LENDD Length of Discretionary Data
E.g. Amount Other.

2

Discretionary Data Discretionary Data variable

SPMAC If Source Address is ‘0300’, MAC included.

MAC on preceding data elements [Transaction
Amount – Discretionary Data] || SPMAC (from the
command), computed using KSESMAC.

0 or 8

Response Code Response Code 2

8.1.2.5 The Response Codes applicable to the Get
Amount Enhanced command are defined in
Table 95.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

99

Table 95: Response Codes to Get Amount Enhanced command

Response Code Description

‘FF34’ Unknown Message Code

‘FF40’ Invalid Currency

‘FF41’ Invalid Currency Exponent

'FFF2' Time-out: the requested operation is valid, but some external
event necessary for the proper execution failed to arrive in time.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

8.1.3 Transaction Completed
The Transaction Completed command is issued to the
Merchant Application Handler to inform it of the completion
status of a specified transaction.

8.1.3.1 The Transaction Completed command must
conform to the format defined in Table 96.

Table 96: Transaction Completed command

Field Value Length

Destination Address '0400' 2

Source Address Any 2

Message Type ‘81’ 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

100

Field Value Length

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0001' 2

Transaction Results ‘00’ = Transaction Successful
‘01’ = Transaction Failed

All other values are reserved for future use.

1

8.1.3.2 The Transaction Completed response must
conform to the format defined in Table 97.

Table 97: Response to Transaction Completed command

Field Value Length

Destination Address Any 2

Source Address '0400' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002’ 2

Response Code Response Code 2

8.1.3.3 The Response Codes applicable to the
Transaction Completed command are defined
in Table 98.

Table 98: Response Codes to Transaction Completed command

Response Code Description

'FF42' Invalid Transaction Results value

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

101

Response Code Description

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

8.1.4 Funds Available
The Funds Available command may be used to inform the
Merchant Application of the funds available to make a
purchase.

8.1.4.1 The Funds Available command must conform to
the format defined in Table 99.

Table 99: Funds Available command

Field Value Length

Destination Address '0400' 2

Source Address Any 2

Message Type '82' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0008' 2

Amount Amount of funds available 4

CURR Currency Code and exponent 3

8.1.4.2 The Funds Available response must conform to
the format defined in Table 100.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

102

Table 100: Response to Funds Available command

Field Value Length

Destination Address Any 2

Source Address '0400' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ’0002’ 2

Response Code Response Code 2

8.1.4.3 The Response Codes applicable to the Funds
Available command are defined in Table 101.

Table 101: Response Codes to Funds Available command

Response Code Description

‘FF40’ Invalid Currency

‘FF41’ Invalid Currency Exponent

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

8.1.5 Display Message
The Display handler must be able to receive and process the
Display Message commands, which are defined in section
7.1.1.

8.1.6 Print commands
The Printer handler must be able to receive and process the

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

103

Print Message and Purge Print Buffer commands, which are
defined in sections 7.1.2 and 7.1.4.

8.2 Summary

Table 102: Merchant Application Handler-Specific commands

Destination

Address

Source

Address

Message Type Description

'0404' Any '61' Display a predefined message

'0402' Any '63' Print a predefined message

'0402' Any '64' Purge print buffer

'0400' Any '80' Get Amount

‘0400’ Any ‘81’ Transaction Completed

‘0400’ Any ‘82’ Funds Available

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

104

9. The PSAM Handler
The PSAM Handler is responsible for managing the interface to
any number of PSAMs that may be resident in the terminal.

The interface between the PSAM Handler and the PSAM is a
standard command/response protocol as defined in reference
3, ISO/IEC 7816-4 and reference 6, EMV Part II, section 2.1.
The PSAM is usually implemented as a processor card, where
the technical interface is either T=0 or T=1, as defined in
reference 2, ISO/IEC 7816-3 and reference 6, EMV Part I.
However, it is possible to implement a PSAM in an alternative
manner, such as in a Hardware Security Module (HSM) to
support a server or other high-volume system.

The PSAM may perform any combination of the following
services:

• Be the storage medium where application specific code is
stored and executed to perform one or more business
functions such as CEP, EMV or any other application, and
hence effectively run the application.

• Provide specialized cryptography services for one or more
payment applications.

• Provide generic (e.g. ISO/IEC DIS 7816-8) cryptography
services.

9.1 Message Handling
The PSAM Handler interface to the PSAM is more complex
than that between the Card Handler and the processor card.
While the PSAM does use the standard command/response
protocol, it can have broader functionality than a normal
“smart card” as used for a consumer card application.

The two principal features of a PSAM, which the PSAM
Handler must cater to, are:

1. The MAD Handler may delegate control over the terminal
processing to the PSAM. In this case, the PSAM must be
able to send commands to other terminal devices and
receive their responses. These commands from the PSAM
are known as “derived commands”.

2. The PSAM may be “multi-threaded”, handling several
concurrent transactions (each with a different IDTHREAD),
each in a different state of completion.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

105

9.1.1 Messages sent to the PSAM Handler
The PSAM Handler must be able to process all of the ICC-
related commands supported by the Processor Card Reader
that are listed in Table 103.

The handler for each individual PSAM must be able to process
all the commands supported by the Processor Card Reader.
However, the treatment of the command and its response
might be different.

The next section describes how a Terminal Message which
conveys an ICC command (Message Type = ‘42’), or a response
from another device (Message Type = ‘FF’), is transformed to a
Command APDU for the PSAM as defined in reference 3,
ISO/IEC 7816-4.

Table 103: ICC Commands supported by PSAM Handler

Message Type Description

'42' ICC Command

'43' ICC Power-On

'44’ ICC Power-Off

'45’ ICC Query

9.1.2 Messages sent to the PSAM
The PSAM Handler will receive messages that are intended for
delivery to a PSAM (as opposed to the PSAM Handler itself), in
one of the following message structures:

• PSAM Command: Message Type ‘42’ indicates A PSAM
command. In this case, the Message Data field contains a
complete C-APDU that must be forwarded to the PSAM.

• Response Message: Message Type ‘FF’ indicates a
response message from another terminal device. These
are received if the PSAM has previously originated a
derived command to the responding device.

Figure 9 illustrates the message translation that is performed
by the PSAM Handler for commands sent to the PSAM.

9.1.2.1 If present, the Lc must be coded on one byte.
The Le must always be present and be coded on
one byte with the value ‘00’.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

106

Figure 9: Message Translation for commands to PSAM

9.1.2.2 When the PSAM Handler receives an ICC
command (Message Type ‘42’) it must forward
the C-APDU contained within the message to
the PSAM. The Source Address and IDTHREAD in
the message must be retained in order to route
correctly the subsequent response from the
PSAM.

9.1.2.3 When the PSAM Handler receives a response

PSAM-Handler PSAMSource Handler

DAD SAD MT IDTHREAD LDATA C-APDU
00pp any ‘42’ ‘nn’ DATA

length
CLA INS P1P2 Lc DATA Le

If MT = '42', PSAM-H retains SAD &
IDTHREAD, and forwards C-APDU

PSAM locates IDTHREAD
(in P1 or in byte 1 of

DATA as required for the
INS) and selects

application.

C-APDU
CLA INS P1P2 Lc DATA Le

If Message Type is an ICC command

If Message Type is a response

DAD SAD MT IDTHREAD LDATA DATA
00pp any ‘FF’ ‘nn’ DATA

length
data string
trailed with
RC from
the sending
Handler

PSAM-H has to construct a
C-APDU and put DATA in it

PSAM locates IDTHREAD in P1

PSAM checks for P2='01' to
determine if more data is to be
sent

C-APDU
CLA INS P1P2 LC DATA LE

‘B0’ ‘FE’ IdTHREAD

||
‘00’/’01’

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

107

message (Message Type ‘FF’), it must construct
a Response Command APDU as shown in Table
118 and send this command to the PSAM.

9.1.2.4 If the LDATA field in a Response Message exceeds
248 bytes, the PSAM Handler must deliver the
response in multiple response commands. In
such a response command, the PSAM Handler
must set the value of P2 equal to ‘01’. If P2
equals ‘01’, then the Lc of the response
command must be 2481.

9.1.2.5 The PSAM Handler must continue sending
response commands with P2 = 01 until the
remainder of the data to be sent does not
exceed 248 bytes. The final response command
of the series must use P2 = 00.

9.1.2.6 If the PSAM Handler receives a command for a
PSAM (Message Type ‘42’) and the C-APDU
cannot be successfully forwarded to the PSAM,
the PSAM Handler must reply to the originator
of the command with the appropriate Response
Code.

9.1.3 Messages from the PSAM

The PSAM will output all messages in the form of Response
APDUs. For derived commands being sent to other terminal
devices, the data portion of the Response APDU will be in the
Terminal Message format, ready to be delivered to the
addressed handler. For response messages, the PSAM Handler
must insert the correct destination address, and a Response
Code, prior to forwarding the message.

Figure 10 illustrates the message translation performed by the
PSAM handler when Response APDUs are received from the
PSAM.

1 Note that this applies only to response messages (MT = ‘FF’). Some application designs will require that data be sent

to the PSAM application in commands, which exceed the amount that can be accommodated in a single C-APDU. In

this case, the application design must provide the ability to send the information in multiple command APDU’s.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

108

Figure 10: Message Translation for response from PSAM

9.1.3.1 The PSAM must send all derived commands in
the form of a Response APDU. The data portion
must be in Terminal Message format, ready to
be forwarded to the recipient. The source
address must specify the sub-address assigned
to the PSAM, the destination address must be
the intended recipient, and the IDTHREAD must be
that assigned by the MAD Handler.

9.1.3.2 The PSAM must send all response messages in
the form of a Response APDU. The data portion
must be in the Terminal Message format, but
without the Response Code. The source address
must specify the sub-address assigned to the
PSAM, and the IDTHREAD must be that assigned

PSAM-Handler PSAM

R-APDU
DATA SW1SW2

DAD SAD MT IDTHREAD LDATA DATA
Undetermined if
MT = ‘FF’

00pp length of DATA
(If MT = ‘FF’,
augmented by 2
to include
eventual addition
of RC),

Data appropriate
to the MT.

determined by
PSAM

If SW1SW2 = '9601', PSAM Handler must send Get Next command to
retrieve additional data.

if MT = 'FF', then PSAM-H must :
a. set DAD = the SAD for the corresponding IDTHREAD retained when
command for PSAM was received (MT = '42')
b. replace SW1SW2 with its own RC
c. leave the rest of the message as is and forward it

if MT ≠ 'FF', then the PSAM-H must :
a. drop SW1SW2
b. leave the rest of the message as is and forward it

note : if SW1SW2 is ≠ '9000' or '9601', then only the SW1SW2 will be
present, in which case PSAM-H takes no further action as the IDTHREAD
is not known.

Dest Handler

R-APDU
DATA
DAD SAD MT IDTHREAD LDATA DATA
DAD set by
PSAM

00pp Not
‘FF’

PSAM generates
derived or
response

commands

R-APDU
DATA
DAD SAD MT IDTHREAD LDATA DATA RC
SAD retained
by PSAM-H

00pp ‘FF’ determined by
PSAM-H

OR

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

109

by the MAD Handler.

9.1.3.3 If the amount of data to send is greater than
252 bytes, the PSAM must deliver the data in
multiple response APDUs. All but the last one
have SW1SW1 = ‘9601’, indicating more data is
to come. The last response APDU must have
status bytes SW1SW2 = ‘9000’, indicating all
data is sent successfully.

9.1.3.4 On receipt of an SW1SW2 = ‘9601’, the PSAM
Handler must send a “Get Next” command,
requesting further data. The Get Next
command is detailed in Section 10.3.6.

9.1.3.5 The PSAM Handler must concatenate the series
of responses until all data is received or the Get
Next command is rejected.

9.1.3.6 When the PSAM Handler has received the
complete response from the PSAM, the PSAM
handler must forward the message to the
assigned destination address.

If the Message Type is different from ‘FF’, the
PSAM Handler passes the message unaltered to
the router.

If the Message Type = ‘FF’, then prior to
forwarding the message, the following
modifications must be made:

• the PSAM Handler must set the destination
address to the source address saved from
the last PSAM command (Message Type =
‘42’) received for the specified IDTHREAD;

• the PSAM Handler must insert the two byte
Response Code = ‘0000’.

9.1.3.7 If the response from the PSAM does not contain
a valid Terminal Message (that is, the
associated Thread cannot be determined, and
the destination is either not specified or cannot
be derived) the PSAM Handler must not
forward the message.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

110

Table 104: Response Codes applicable to PSAM Handler

Response Code Description

'FF23' Card did not respond

'FF24' No card in reader

'FF25' Unrecoverable Transmission error

'FF26' Card buffer overflow

'FF27' Unrecoverable Protocol error

'FF28' Response has no status words

'FF29' Invalid buffer

'FF2A' Other card error

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

111

10. PSAM Applications
A PSAM receives incoming commands, and invokes the correct
application for processing based on the contents of the
command.

The specific requirements for individual PSAM applications are
defined in application-specific specifications. This section
defines only the requirements for generic functionality,
common to all applications.

10.1 PSAM Initialization
After a terminal resets a PSAM, the terminal applications must
each initialize the corresponding applications in the PSAM(s)
by sending the Start-up PSAM command. This command
allows the terminal to provide the PSAM with its current
assigned “sub-address”, which must be included in subsequent
messages originated by the PSAM application.

The response to the command contains the PSAM
identification (RIDPSAM||IDPSAMCREATOR||IDPSAM) as a first field
and other application specific data following that.

Following the start-up command, each terminal application
may obtain a list of all AIDs, which can be processed by that
specific PSAM application.

Using the list of AIDs supported by the different PSAM
applications, the MAD-Handler can determine the set of AIDs
mutually supported by the terminal and PSAM, and which
PSAM application is to be used for each card AID.

The MAD-Handler applications must each perform any start-up
procedures required by the associated specifications. Those
start-up procedures will be defined in the application
specifications. These application-specific requirements are
outside the scope of this document.

This section provides an overview of the PSAM initialization
sequence. The overall initialization process is described in
section 5.2.

10.1.1.1 On reset, the PSAM will respond with the ATR,
including the Historical Bytes, if any.

10.1.1.2 In the response to the PSAM Startup command,
the PSAM must include the PSAM Identification
(RID + IDPSAMCREATOR + IDPSAM) and may include
additional application specific data.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

112

10.1.1.3 The PSAM will respond to the Get Supported
AIDs command with the list of AIDs supported
by that application.

10.2 PSAM Shut-down
The Shutdown Command allows the PSAM application to save
all outstanding data, prior to withdrawal power from the
PSAM.

10.2.1.1 The PSAM must send a successful response,
even if the particular PSAM implementation
does not require any processing as a result of
receiving this command.

10.3 PSAM Commands and Responses
This specification defines the use of commands with CLA byte
‘B0’. The INS ranges and their usage are defined in Table 105.
Table 106 lists the application-independent commands that
must be supported by the PSAM Manager.

Table 105: CLA/INS Byte Definitions

CLA INS P1-P2 Command

B0 ‘00’-‘2E’ IDPSAMAPP Generic commands supported by all applications. Commands cannot be
concurrent within the same PSAM application.

IDTHREAD must be in most significant byte of the command data

These commands are defined in this specification.

B0 ‘30’-‘5E’
‘70’-‘7E’

IDPSAMAPP Application-specific, non-concurrent commands

IDTHREAD must be in most significant byte of the command data

B0 ‘80’-‘8E’
‘A0’-BE’

IDPSAMAPP Application-specific commands for a particular thread.

IDTHREAD must be in most significant byte of the command data.

B0 ‘C0’-‘DE’ IDPSAMAPP Generic commands supported by all applications, for a particular thread.

These commands are defined in this specification.

IDTHREAD must be in most significant byte of the command data.

B0 ‘E0’-‘FE’ IDTHREAD ||
‘00’/’01’

Generic commands supported by all applications, for a particular thread.

These commands are defined in this specification.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

113

Table 106: Application-Independent PSAM Commands

CLA INS Command Description

‘B0 02’ Start-up PSAM Used to exchange identification information with the PSAM
application

‘B0 04’ PSAM Shutdown Informs the PSAM application that power will be withdrawn and
allows it to prepare for subsequent re-start.

‘B0 08’ Get Supported AIDs Obtains the set of AIDs supported by the PSAM application.

‘B0 C2’ Synchronize PSAM/PIN Pad Instructs the PSAM application to synchronize with the PIN Pad/SCD.

‘B0 FC’ Get Next Used to obtain the next incremental response from the PSAM.

‘B0 FE’ Response Command Used to convey to the PSAM responses received from other terminal
devices.

10.3.1 Message Formats
All commands must be delivered to the PSAM in the form of
Command APDUs.

Commands from the terminal application (in the MAD-
Handler) must be sent to the PSAM Handler in an ICC
command Terminal Message (Message Type ‘42’). The PSAM
sends all responses to these commands in the form of
Response Messages (Message Type ‘FF’) embedded within
Response APDUs.

The PSAM Handler itself generates two types of commands to
the PSAM.

• The Response Command is used to forward to the PSAM
response data received from another terminal device

• The Get Next Command is used to retrieve continuation
data when the PSAM is sending more data than can be
fitted into a single R-APDU.

Sections 9.1.2 and 9.1.3 specify the PSAM-Handler
requirements for handling these messages.

A successful response to the MAD-Handler will be in the
“nominal” formats shown for each defined command. The
general format for a successful response is shown in Table
107. An error response will be as defined in Table 108.

Note that there are two types of error response that the PSAM

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

114

may send:

• If the error was detected by the PSAM application (for
example, a data format error in the command from the
MAD Handler application), the PSAM will respond with a
full Terminal Message containing an Application Status
Word different from ‘0000’. Additionally, the response
may also contain application specific error information
(Error Response Data).

• If an error was detected on transport layer, the PSAM may
only respond with SW1SW2.

Note: For PSAM application commands (which originate from
the terminal application), this section documents the command
and response formats as sent and received by the terminal
application. To aid PSAM developers and designers, the part of
the message exchanged between the PSAM and PSAM Handler
is shaded.

For the two PSAM-Handler-originated commands, the C-APDU
format is shown.

Table 107: Successful response to PSAM application command

Field Value Length (bytes)

Destination Address Destination Address from the command message 2

Source Address ‘00pp’ where pp is the sub-address assigned to the PSAM 2

Message Type ‘FF’ 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0004’ + Length of the response data. 2

Response Data Response Data as defined for each PSAM command var.

ASW1 ASW2 ‘0000’ 2

RC ‘0000’ 2

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

115

Table 108: Error response to PSAM application command

Field Value Length (bytes)

Destination Address Destination Address from the command message 2

Source Address ‘00pp’ where pp is the sub-address assigned to the PSAM 2

Message Type ‘FF’ 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0004’ + Length of the Error Response Data. 2

Error Response Data Application specific data returned in case of error. var.

ASW1 ASW2 Must be different from ‘0000’ 2

RC ‘0000’ 2

10.3.2 Application Status Words
Table 109 lists the Application Status Words that may be
received from the PSAM application in a response to a
command defined in this section.

Table 109: Application Status Words

ASW1 ASW2 Meaning

‘00’ ‘00’ Successful

 all other RFU

‘01’ ‘00’ RFU

‘02’ ‘00’ No information given

 ‘01’ Application not supported

 ’02’ Function not supported

 ‘03’ PIN Pad is unresponsive

 ‘04’ PIN Pad unable to synchronize

 all other RFU

‘03’-0F’ all RFU

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

116

ASW1 ASW2 Meaning

‘1x’ all Application-specific ASWs

‘20’-‘60’ all RFU

‘61’-‘6F’ all Reserved from conveying SW1SW2 as received from the Processor Card
Reader.

‘70’ ‘90’ all Reserved for future use

‘91’-‘9F’ all Reserved from conveying SW1SW2 as received from the Processor Card
Reader.

‘A0’-‘FF’ all RFU

10.3.3 Start-up PSAM
The Start-up PSAM command is issued by a MAD Handler
application to exchange identification information about the
PSAM application, and to allow the PSAM application to
perform any necessary initialization

10.3.3.1 The Start-up PSAM command must conform to
the format defined in Table 110.

10.3.3.2 The Start-up PSAM command response must
conform to the format defined in Table 111.

Table 110: Start-up PSAM command

Field Value Length

Destination Address ‘00pp’ where pp is the sub-address assigned to the
PSAM

2

Source Address ‘0100’ for the MAD-Handler2 2

Message Type ‘42’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0006’ + Lc 2

2 Normally PSAM application commands will originate from the terminal application in the MAD-Handler. However,

TAPA does not preclude the ability to send commands from one PSAM to another. In that case, the source address

would be ‘00xx’ where xx is the sub-address of the sending PSAM.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

117

Field Value Length

CLA ‘B0’ 1

INS ‘02’ 1

P1, P2 IDPSAMAPP 2

Lc ‘02’ 1

IDTHREAD Thread Identifier 1

PSAM sub-address ‘pp’ 1

Le ‘00’ 1

Table 111: Start-up Command Response

Field Value Length
(bytes)

Destination Address The PSAM Handler will insert the address of the
source of the command.

2

Source Address ‘00pp’ where pp is the sub-address assigned to the
PSAM

2

Message Type ‘FF’ 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0011’+LApplicaitonData 2

PSAM Identification RIDPSAM || IDPSAMCREATOR || IDPSAM 13

Application Data Data specific to an IDPSAMAPP LApplicaiton

Data

ASW1 ASW2 ‘0000’ 2

RC ‘0000’ 2

10.3.4 Get Supported AIDs
The Get Supported AIDs command is issued by the MAD
Handler to retrieve information about the supported AIDs for
a specific PSAM application.

10.3.4.1 The Get Supported AIDs command must

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

118

conform to the format defined in Table 112.

10.3.4.2 The Get Supported AIDs response must
conform to the format defined in Table 113.

Table 112: Get Supported AIDs Command

Field Value Length

(bytes)

Destination Address ‘00pp’ where pp is the sub-address assigned to the
PSAM

2

Source Address ‘0100’ for the MAD-Handler 2

Message Type ‘42’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0006’ + Lc 2

CLA ‘B0’ 1

INS ‘08’ 1

P1, P2 IDPSAMAPP 2

Lc ‘01’ 1

IDTHREAD Thread Identifier 1

Le ‘00’ 1

Table 113: Response to Get Supported AIDs

Field Value Length

(bytes)

Destination Address The PSAM Handler will insert the address of the
source of the command.

2

Source Address ‘00pp’ where pp is the sub-address assigned to the
PSAM

2

Message Type ‘FF’ 1

IDTHREAD Thread Identifier of the request 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

119

Field Value Length

(bytes)

LDATA Variable 2

CNTAID Number of AIDs listed in this response

The following fields (subscripted by “N”) are
repeated CNTAID times (N=0 to CNTAID)

1

LENAIDN Length of Nth AID 1

AIDN Nth AID 5-16

IDSCHEME,N A reference number assigned to AID N by the
acquirer.

1

ASW1 ASW2 ‘0000’ 2

RC ‘0000’ 2

10.3.5 PSAM Shutdown
The PSAM Shutdown command is issued as an instruction to
the PSAM application prior to withdrawing power from the
PSAM.

10.3.5.1 The PSAM Shutdown command must conform
to the format defined in Table 114.

10.3.5.2 The PSAM Shutdown response must conform to
the format defined in Table 115.

Table 114: PSAM Shutdown command

Field Value Length

(bytes)

Destination Address ‘00pp’ where pp is the sub-address assigned to the
PSAM

2

Source Address ‘0100’ for the MAD-Handler 2

Message Type ‘42’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0006’ + Lc 2

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

120

Field Value Length

(bytes)

CLA ‘B0’ 1

INS ‘04’ 1

P1P2 IDPSAMAPP 2

Lc ‘01’ 1

IDTHREAD Thread Identifier 1

Le ‘00’ 1

Table 115: Response to PSAM Shutdown command

Field Value Length

(bytes)

Destination Address The PSAM Handler will insert the address of the
source of the command.

2

Source Address ‘00pp’ where pp is the sub-address assigned to the
PSAM

2

Message Type ‘FF’ 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0004’ 2

ASW1 ASW2 ‘0000’ 2

RC ‘0000’ 2

10.3.6 Get Next
The Get Next command is issued by the PSAM Handler, after
receiving a response from the PSAM with SW1SW2 = ‘9601’, in
order to get the next incremental response from the PSAM.

10.3.6.1 The Get Next command must conform to the
format defined in Table 116.

10.3.6.2 The Get Next response must conform to the

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

121

format defined in Table 117.

Note: The Get Next command APDU is created directly by the
PSAM Handler, and is never transmitted between handlers in
the Terminal Message format.

Table 116: Get Next command

Field Value Length

(bytes)

CLA ‘B0’ 1

INS ‘FC’ 1

P1 IDTHREAD 1

P2 ‘00’ 1

Le ‘00’ 1

Table 117: Response to Get Next command

Field Value Length

(bytes)

Response Data Next increment of Response data var.

SW1SW2 ’9000’ or ’9601’

(‘9000’ indicates that this is the last increment of
data to be given to the PSAM Handler)

2

SW1SW2 ’6F01’
Syntax error in command. Resend Command.

2

SW1SW2 ’6F02’
Abort chaining.

2

10.3.7 Response Command
The PSAM Handler issues the Response command in order to
send response data from another terminal device to the
PSAM.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

122

10.3.7.1 The Response command must conform to the
format defined in Table 118.

10.3.7.2 If the P2 in the command is ‘01’, the PSAM must
respond with an R-APDU consisting of only an
SW1SW2 = ’90 00’. The PSAM Handler will then
send another response command containing
additional data to be concatenated to the data
already received.

When two or more response commands are
“chained” as indicated by P2 = ‘01’, the PSAM
must concatenate the data portion from each
command, left to right, until the final command
with P2 = ‘00’ is received. When all data have
been received, the PSAM may then proceed
with processing.

Note: The Response Command APDU is created directly by the
PSAM Handler, and is never transmitted between handlers in
the Terminal Message format.

Table 118: Response command

Field Value Length

(bytes)

CLA ‘B0’ 1

INS ‘FE’ 1

P1 IDTHREAD 1

P2 ‘00’ or ‘01’ 1

Lc Length of the response data 1

Response Data Response data from other device variable

Le ‘00’ 1

10.3.8 Synchronize PSAM - PIN Pad/Secure Cryptograhic Device
The Synchronize PSAM/PIN Pad command is specific to the PIN
Pad/Secure Cryptographic Device processing described in
section 13.3, and is only used if the PSAM provides the

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

123

application control. PSAM applications that do not support the
PIN Pad/Secure Cryptographic Device Processing, or do not
provide application control, do not need to support this
command.

10.3.8.1 The Synchronize PSAM/PIN Pad command must
conform to the format defined in Table 119.

Table 119: Synchronize PSAM/PIN Pad command

Field Value Length

(bytes)

Destination Address ‘00pp’ where pp is the sub-address assigned to the
PSAM

2

Source Address ‘0100’ for the MAD-Handler 2

Message Type ‘42’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0006’ + Lc 2

CLA 'B0' 1

INS 'C2' 1

P1P2 IDPSAMAPP 2

Lc ‘01’ 1

IDTHREAD Thread Identifier 1

Le ’00’ 1

10.3.8.2 The Synchronize PSAM/PIN Pad response must
conform to the format defined in Table 120.

10.3.8.3 The PSAM must return the appropriate
Response Code if the Synchronize PSAM/PIN
Pad command has not been processed
correctly.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

124

Table 120: Response to Synchronize PSAM/PIN Pad command

Field Value Length

(bytes)

Destination Address The PSAM Handler will insert the address of the
source of the command.

2

Source Address ‘00pp’ where pp is the sub-address assigned to the
PSAM

2

Message Type ‘FF’ 1

IDTHREAD Thread Identifier of the request 1

LDATA '000C' 2

PIN Pad Identifier

IDPPCREATOR Unique Id of PIN Pad Creator 4

IDPP Unique Id of PIN Pad/secure Device 4

ASW1 ASW2 ‘0000’ 2

RC ‘0000’ 2

Table 121: ASW1-ASW2 Response Codes to Synchronize PSAM/PIN Pad command

ASW1-ASW2 Description

‘0203’ PIN Pad/Secure Cryptographic Device is unresponsive

‘0204’ PIN Pad/Secure Cryptographic Device unable to synchronize

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

125

11. The Data Store Handler
The Data Store Handler is responsible for managing the non-
volatile memory of the terminal.

11.1 General requirements
The Data Store Handler only recognizes the common Handler
commands: Open Handler and Close Handler.

11.2 Messages sent to the Data Store Handler
This section provides a list of additional commands that should
be accepted and processed by the Data Store Handler.

11.2.1 File Management

11.2.1.1 The Data Store Handler must provide file
management services as requested by other
terminal components (typically MAD-Handler
and PSAM applications). Terminal components
must be able to request the storage of both
keyed and non-keyed records grouped into
files.

For the purposes of this section, a “record” is
defined to consist of a string of “key data”
(which may have length zero) and a string of
“record data”.

11.2.1.2 If a keyed file is created, then each record
stored in that file must have a unique key.

11.2.1.3 If a service is requested, it is fulfilled either
entirely or not at all.

11.2.2 Create File
The Create File command is used to create one or more files
within the terminal Data Store.

11.2.2.1 The Create File command must conform to the
format defined in Table 122.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

126

Table 122: Create File command

Field Value Length

Destination Address '0500' 2

Source Address Any 2

Message Type ‘90’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0004' 2

NUMFILE Number of files of this type that should be created 1

LENSKEY Maximum length of search key to associate with
record. (‘00’ if no search key is used).

1

LENREC Maximum length of a record 2

11.2.2.2 The Create File response must conform to the
format defined in Table 123.

11.2.2.3 If there is insufficient memory to successfully
process the Create File command, the Data
Store Handler must return a Response Code
indicating “Insufficient resources”.

Table 123: Response to Create File command

Field Value Length

Destination Address Any 2

Source Address '0500' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA 2+2*NUM FILE 2

File Identifiers N file identifiers of the created files 2 *NUM FILE

Response Code Response Code 2

11.2.2.4 The Response Codes applicable to the Create

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

127

File command are defined in Table 124.

Table 124: Response Codes to Create File command

Response Code Description

'FF51' Invalid File ID

‘FF52’ Record too large

'FF54' File creation error.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.3 Delete File
The Delete File command is used to delete one or more files
within the terminal Data Store. File deletion may be necessary
to recover the memory they occupy and release the File Ids
associated with them.

11.2.3.1 The Delete File command must conform to the
format defined in Table 125.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

128

Table 125: Delete File command

Field Value Length

Destination Address '0500' 2

Source Address Any 2

Message Type ‘91’ 1

IDTHREAD Thread Identifier assigned by the MAD-
Handler

1

LDATA 2*NUM FILE 2

File Identifiers N file identifiers of the files to be deleted 2 *NUM FILE

11.2.3.2 The Delete File response must conform to the
format defined in Table 126.

Table 126: Response to Delete File command

Field Value Length

Destination Address Any 2

Source Address '0500' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

11.2.3.3 The Response Codes applicable to the Delete
File command are defined in Table 127.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

129

Table 127: Response Codes to Delete File command

Response Code Description

'FF51' Invalid File ID

'FF55' File could not be accessed.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.4 Add File Record
The Add File Record command is used to add a record to an
existing file within the terminal Data Store. Adding a record to
a file means making an entry of the maximum file record + key
size available.

11.2.4.1 The Add File Record command must conform to
the format defined in Table 128.

11.2.4.2 The Data Store Handler must not reformat the
file record data supplied in the DATA field.

11.2.4.3 If LENREC = ‘0000’, the Data Store must reserve
space for the maximum record size. However,
the actual record length must be assigned as
‘0000’ until a subsequent Update is received
with a defined size record.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

130

Table 128: Add File Record command

Field Value Length

Destination Address '0500' 2

Source Address Any 2

Message Type ‘92’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0005’ + LENSKEY + LENREC 2

IDFILE File to which the record must be added 2

LENSKEY Length of search key to associate with record. (‘00’
if no search key is used, or if no data are present).

1

Key Data Search Key data LENSKEY

LENREC Length of a record (may be '0000') 2

Record Data Record data LENREC

11.2.4.4 The Add File Record response must conform to
the format defined in Table 129.

11.2.4.5 If the Data Store Handler returns the Response
Code of “successful operation”, the entire
record must have been added to the file as
requested.

11.2.4.6 If there is insufficient memory to successfully
process the Add File Record command, the Data
Store Handler must return a Response Code
indicating “Insufficient resources”.

Table 129: Response to Add File Record command

Field Value Length

Destination Address Any 2

Source Address '0500' 2

Message Type 'FF' 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

131

Field Value Length

IDTHREAD Thread Identifier of the request 1

LDATA '0004' 2

Record Pointer Pointer to record within File 2

Response Code Response Code 2

11.2.4.7 The Response Codes applicable to the Add File
Record command are defined in Table 130.

Note: the Data Store Handler may reject the Add File Record
command for a keyed file if the search key already exists. It is
up to the application adding the record to ensure uniqueness
of the search key.

Table 130: Response Codes to Add File Record command

Response Code Description

'FF51' Invalid File ID

'FF52' Record too large

'FF53' Search key too large

'FF55' File could not be accessed.

'FF57' File read error.

'FF58' File write error.

‘FF59’ Search key already existing

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

132

Response Code Description

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.5 Get File Record
The Get File Record command is used to retrieve data based
on the record pointer within a given file. This function is non-
destructive. Note that '0000' is an invalid record pointer,
which may be returned when there is no next or previous
record. In the context of this command, the previous record is
the record that was last added to the file before the current
record and the next record is the record that was added after
the current record was added.

11.2.5.1 The Get File Record command must conform to
the format defined in Table 131.

Table 131: Get File Record command

Field Value Length

Destination Address '0500' 2

Source Address Any 2

Message Type ‘93’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0005’ 2

IDFILE File from which the record must be retrieved 2

Record Pointer Pointer to record to get.

Not used (and should be ‘0000’) when the Pointer
Orientation is either ‘02’ or ‘03’.

2

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

133

Field Value Length

Pointer Orientation '00': Get the record, which was pointed to by the
Record Pointer field. When the record has been
returned, the record pointer must be set to the
next record (allows FIFO processing).

'01': Get the record, which was pointed to by the
Record Pointer field. When the record has been
returned, the record pointer must be set to the
previous record (allows LIFO processing).

'02': Get the first record in the file. When the
record has been returned, the record pointer must
be set to the next record (allows FIFO processing).

'03': Get the last record in the file. When the
record has been returned, the record pointer must
be set to the next to last record (allows LIFO
processing).

1

11.2.5.2 The Get File Record response must conform to
the format defined in Table 132.

Table 132: Response to Get File Record command

Field Value Length

Destination Address Any 2

Source Address '0500' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA LENSKEY + LENREC + ‘0007’ 2

LENSKEY Length of search key associated with the retrieved
record. (‘00’ if no search key is used).

1

Key Data Search key data LENSKEY

LENREC Length of the record 2

Record Data Retrieved record data LENREC

Record Pointer Pointer to next/previous record position within file 2

Response Code Response Code 2

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

134

11.2.5.3 The Response Codes applicable to the Get File
Record command are defined in Table 133.

Table 133: Response Codes to Get File Record command

Response Code Description

'FF50' Invalid record pointer. Record pointer outside the range defined
for the current structure (Has not been added yet).

'FF51' Invalid File ID

'FF55' File could not be accessed

'FF56' File seek error. A selected record (key) could not be found.

'FF57' File read error

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.6 Update File Record
The Update File Record command is used to update an existing
record with an amount of data that must not exceed the
maximum indicated at file creation. The Update File Record
command is destructive in that the previous content of the
record is erased.

11.2.6.1 The Update File Record command must
conform to the format defined in Table 134.

Note: The record to be updated must have been
previously retrieved using either the Get File

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

135

Record command or the Find and Get File
Record command. The Update Record command
must specify the record pointer of the record to
be updated. The data included in the Key Data
field is used solely to update the indicated
record, and not to locate it.

Table 134: Update File Record command

Field Value Length

Destination Address '0500' 2

Source Address Any 2

Message Type ‘94’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0007’ + LENSKEY + LENREC 1

IDFILE File in which the record must be updated 2

Record Pointer Pointer to record to update

The first record in a file may be addressed using
‘0000’.

2

LENSKEY Length of search key to associate with record.
(‘00’ if no search key is used).

1

Key Data Search Key data LENSKEY

LENREC Length of a record 2

Record Data New record data LENREC

11.2.6.2 The Update File Record response must conform
to the format defined in Table 135.

11.2.6.3 If the Data Store Handler returns the Response
Code of “successful operation”, the entire
record, as specified in the Update command,
must have been updated.

11.2.6.4 If the Data Store Handler rejects the command,
the addressed record must not have been
modified.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

136

Table 135: Response to Update File Record command

Field Value Length

Destination Address Any 2

Source Address '0500' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0004’ 2

Record Pointer Pointer to record position within File 2

Response Code Response Code 2

11.2.6.5 The Response Codes applicable to the Update
File Record command are defined in Table 136.

Table 136: Response Codes to Update File Record command

Response Code Description

'FF50' Invalid record number. Record number outside the range defined
for the current structure (Has not been added yet).

'FF51' Invalid File ID

'FF52' Record too large

'FF53' Search key too large

'FF55' File could not be accessed.

'FF57' File read error.

'FF58' File write error.

‘FF59’ Search key already existing

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

137

Response Code Description

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.7 Find and Get File Record
The Find and Get File Record command is used to locate and
retrieve an existing record based on the associated key. This
function is non-destructive to the file record.

11.2.7.1 The Find and Get File Record command must
conform to the format defined in Table 137.

Table 137: Find and Get File Record command

Field Value Length

Destination Address '0500' 2

Source Address Any 2

Message Type ‘95’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0003’ + LENSKEY 2

IDFILE File from which the record must be retrieved 2

LENSKEY Length of search key associated with the retrieved
record.

1

Key Data Search Key data LENSKEY

11.2.7.2 The Find and Get File Record response must
conform to the format defined in Table 138.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

138

Table 138: Response to Find and Get File Record command

Field Value Length

Destination Address Any 2

Source Address '0500' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0007’ + LENSKEY + LENREC 2

LENSKEY Length of the search key associated with the
retrieved record. This must be the same as the
length specified when the record was Added.

1

Key Data Search Key data LENSKEY

LENREC Length of the retrieved record 2

Record Data Retrieved record data LENREC

Record Pointer Pointer to retrieved record 2

Response Code Response Code 2

11.2.7.3 The Response Codes applicable to the Find and
Get File Record command are defined in Table
139.

Table 139: Response Codes to Find and Get File Record command

Response Code Description

'FF50' Invalid record number. Record number outside the range defined
for the current structure (Has not been added yet).

'FF51' Invalid File ID

'FF53' Search key too large

'FF55' File could not be accessed.

'FF56' File seek error. A selected record (key) could not be found.

'FF57' File read error.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

139

Response Code Description

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.8 Delete File Record
The Delete File Record command is used to delete a record
based on the record pointer for a given file. This function not
only erases the data from the record but also frees the record
space associate with it.

11.2.8.1 The Delete File Record command must conform
to the format defined in Table 140.

Table 140: Delete File Record command

Field Value Length

Destination Address '0500' 2

Source Address Any 2

Message Type ‘96’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0004’ 2

IDFILE File from which the record must be deleted 2

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

140

Field Value Length

Record Pointer Pointer to record to delete

The first record in a file may be addressed using
‘0000’.

2

11.2.8.2 The Delete File Record response must conform
to the format defined in Table 141.

Table 141: Response to Delete File Record command

Field Value Length

Destination Address Any 2

Source Address '0500' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

11.2.8.3 The Response Codes applicable to the Delete
File Record command are defined in Table 142.

Table 142: Response Codes to Delete File Record command

Response Code Description

'FF50' Invalid record pointer. Record pointer outside the range defined
for the current structure (Has not been added yet).

'FF51' Invalid File ID

'FF55' File could not be accessed.

'FF57' File read error.

'FF58' File write error.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

141

Response Code Description

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.9 Find and Delete File Record
The Find and Delete File Record command is used to locate
and erase a record based on the search key from a given file.
This function not only erases the data from the record but also
frees the actual record space associated with it.

11.2.9.1 The Find and Delete File Record command must
conform to the format defined in Table 143.

Table 143: Find and Delete File Record command

Field Value Length

Destination Address '0500' 2

Source Address Any 2

Message Type ‘97’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0003’ + LENSKEY 2

IDFILE File from which the record must be deleted 2

LENSKEY Length of search key associated with the record to
delete.

1

Key Data Search Key data LENSKEY

11.2.9.2 The Find and Delete File Record response must

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

142

conform to the format defined in Table 144.

Table 144: Response to Find and Delete File Record command

Field Value Length

Destination Address Any 2

Source Address '0500' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0002’ 2

Response Code Response Code 2

11.2.9.3 The Response Codes applicable to the Find and
Delete File Record command are defined in
Table 145.

Table 145: Response Codes to Find and Delete File Record command

Response Code Description

'FF50' Invalid record pointer. Record pointer outside the range defined
for the current structure (Has not been added yet).

'FF51' Invalid File ID

'FF53' Search key too large

'FF55' File could not be accessed.

'FF56' File seek error. A selected record (key) could not be found.

'FF57' File read error.

'FF58' File write error.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

143

Response Code Description

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

11.2.10 Clear File
The Clear File command is used to delete all records from a
specified file. This function not only erases the data from the
record but also frees the actual record space associated with
it. However, the cleared file remains allocated to the
previously defined File ID.

11.2.10.1 The Clear File command must conform to the
format defined in Table 146.

Table 146: Clear File command

Field Value Length

Destination Address '0500' 2

Source Address Any 2

Message Type ‘98’ 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0002' 2

IDFILE File from which the records must be deleted 2

11.2.10.2 The Clear File response must conform to the
format defined in Table 147.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

144

Table 147: Response to Clear File command

Field Value Length

Destination Address Any 2

Source Address '0500' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

11.2.10.3 The Response Codes applicable to the Clear File
command are defined in Table 148.

Table 148: Response Codes to Clear File command

Response Code Description

'FF51' Invalid File ID

'FF55' File could not be accessed.

'FF57' File read error.

'FF58' File write error.

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

145

11.3 Summary

Table 149: Data Store Handler specific commands

Destination

Address

Source

Address

Message Type Description

'0500' Any '90' Create File

'0500' Any ‘91’ Delete File

'0500' Any ‘92’ Add File Record

'0500' Any '93' Get File Record

'0500' Any ‘94’ Update File record

'0500' Any ‘95’ Find and Get File Record

'0500' Any ‘96’ Delete File Record

'0500' Any '97' Find and Delete File Record

'0500' Any ‘98’ Clear File

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

146

12. The Communication Handler
The Communication Handler is responsible for managing the
communication interface and providing application level
online communication services to one or more host systems.
The physical communication interface or protocol used to
interact with an online host system is not dictated by this
specification.

12.1 Messages sent to the Communication
Handler

This section provides a list of additional commands that should
be accepted and processed by the Communication Handler.

12.1.1 Initiate Communication Session
The Initiate Communication Session command is used to
establish initial communication with an online host system.
The information needed to establish this session must be
conveyed in the Session Data field. The coding of the Session
Data field is proprietary to the terminal and outside the scope
of this specification.

Following the session setup, data is exchanged using the Read
Handler String and Write Handler String commands.

12.1.1.1 The Initiate Communication command must
conform to the format defined in Table 150.
The coding of the Session Data field is
proprietary to the terminal and outside the
scope of this specification.

Table 150: Initiate Communication Session command

Field Value Length

Destination Address '0600' 2

Source Address Any 2

Message Type 'B0' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

147

Field Value Length

LDATA Length of Session Data 2

Session Data Data needed to initiate the communication
session

Var.

12.1.1.2 The Initiate Communication Session response
must conform to the format defined in Table
151.

Table 151: Response to Initiate Communication Session command

Field Value Length

Destination Address Any 2

Source Address '0600' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

12.1.1.3 The Response Codes applicable to the Initiate
Communication Session command are defined
in Table 152.

Table 152: Response Codes to Initiate Communication Session command

Response Code Description

'FF60' Invalid session setup parameters.

'FF62' Connection in progress

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

148

Response Code Description

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

12.1.2 Terminate Communication Session
The Terminate Communication Session command is used to
discontinue a communication session with a host system.

12.1.2.1 The Terminate Communication Session
command must conform to the format defined
in Table 153.

Table 153: Terminate Communication Session command

Field Value Length

Destination Address '0600' 2

Source Address Any 2

Message Type 'B1' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA '0000' 2

12.1.2.2 The Terminate Communication Session
response must conform to the format defined
in Table 154.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

149

Table 154: Response to Terminate Communication Session command

Field Value Length

Destination Address Any 2

Source Address '0600' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA '0002' 2

Response Code Response Code 2

12.1.2.3 The Response Codes applicable to the
Terminate Communication Session command
are defined in Table 155.

Table 155: Response Codes to Terminate Communication Session command

Response Code Description

'FF61' No connection

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

150

12.2 Summary

Table 156: Communication Handler-Specific commands

Destination

Address

Source

Address

Message Type Description

'0600' Any '60' Initiate communication

'0600' Any ‘61’ Terminate Session

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

151

13. Event Handler
The Event Handler provides a mechanism for external events
to be posted to the controlling application processes. Devices
may post events to the Event queue by sending an Add Event
Message to the Event Handler. Application processing code
(either in the MAD-Handler or in the PSAM) may send
messages to the Event Handler in order to retrieve events
from the queue.

13.1 Event Types
The event type codes are defined in Table 157, with the
addresses of the handlers where the events may have
occurred.

Table 157: Event Types

Event Type Code Event Description Event Location

‘01’ Chip Card Inserted Processor Card
Reader

‘0202’

Memory Card
Reader

‘0203’

Contactless Card
Reader

‘0204’

PSAM Handler ‘00pp’

‘02’ Magnetic Stripe Card Swiped Magnetic Stripe
Reader

‘0201’

‘03’ Key Pressed Customer Key Pad ‘0303’

Merchant Key Pad ‘0401’

‘04’ Incoming Call Communication
Handler

‘0600’

‘05’-‘7F’ Reserved for Future Use

‘80’-‘FF’ Reserved for Proprietary Use

13.2 Event Handler Messages
The Event Handler must be able to process the commands
defined in this section.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

152

13.2.1 Add Event
The Add Event message is used to post an event to the end of
the event queue.

13.2.1.1 An Add Event command must conform to the
format defined in Table 158.

13.2.1.2 The Add Event message may originate from a
device handler that is not able to assign a valid
Thread Identifier. To ensure that there is no
collision with on-going threads being managed
by the MAD-Handler, the Event Handler must
not send a response to the Add Event message.

The Add Event message is not a “command”
requesting an action, and therefore does not
transfer control. It is the logical equivalent of
writing a message directly to the Event Queue.

13.2.1.3 The Event Handler must retain the Event Type
Code and Event Location in the Event Queue.

Table 158: Add Event Command

Field Value Length

Destination Address ‘0700’ 2

Source Address Any 2

Message Type 'C0' 1

IDTHREAD Any 1

LDATA ‘0003’ 2

Event Type Code Type of Event 1

Event Location Address of Event location 2

13.2.2 Get Event
The Get Event message is used to remove the oldest event
from the event queue.

13.2.2.1 A Get Event command must conform to the

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

153

format defined in Table 159.

Table 159: Get Event Command

Field Value Length

Destination Address ‘0700’ 2

Source Address Any 2

Message Type 'C1' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0000’ 2

13.2.2.2 A Get Event response must conform to the
format defined in Table 160.

13.2.2.3 The Event Handler must return the Response
Code of “successful operation” if the Handler
was able to successfully retrieve the oldest
event from the event queue. The event must be
removed from the queue as a result of a
successful retrieval.

13.2.2.4 The Event Handler must return the appropriate
Response Code if it is unable to retrieve an
event from the event queue. The event must
not be removed from the queue if the retrieval
was unsuccessful.

Table 160: Response to Get Event command

Field Value Length

Destination Address Any 2

Source Address '0700' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0005’ 2

Event Type Code Type of Event 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

154

Field Value Length

Event Location Address of Event location 2

Response Code Response Code 2

13.2.2.5 The Response Codes applicable to the Get Event
command are defined in Table 161.

Table 161: Response Codes to Get Event command

Response Code Description

‘FF72’ No Events in Queue

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

13.2.3 Find Event
The Find Event message is used to find the first (or oldest)
message of a particular type, or for a particular location, and
remove it from the event queue.

13.2.3.1 A Find Event command must conform to the
format defined in Table 162.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

155

Table 162: Find Event Command

Field Value Length

Destination Address ‘0700’ 2

Source Address Any 2

Message Type 'C2' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0004’ 2

Search Type See Table 179 1

Event Type Code Event Type to find 1

Event Location Event location to find 2

13.2.3.2 A Find Event response must conform to the
format defined in Table 163.

13.2.3.3 The Event Handler must return the Response
Code of “successful operation” if the Handler
was able to successfully find and retrieve an
event from the queue. The event must be
removed from the queue as a result of a
successful retrieval.

13.2.3.4 The Event Handler must return the appropriate
Response Code if it is unable to find or retrieve
an event from the event queue. No event must
be removed from the queue if the retrieval was
unsuccessful.

Table 163: Response to Find Event command

Field Value Length

Destination Address Any 2

Source Address '0700' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

156

Field Value Length

LDATA ‘0005’ 2

Event Type Code 1

Event Location 2

Response Code Response Code 2

13.2.3.5 The Response Codes applicable to the Find
Event command are defined in Table 164.

Table 164: Response Codes to Find Event command

Response Code Description

‘FF72’ No Events in Queue

‘FF73’ No Matching Events in Queue

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

13.2.4 Flush Event Queue
The Flush Event Queue is used remove all outstanding events
from the event queue.

13.2.4.1 A Flush Event Queue command must conform
to the format defined in Table 165.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

157

Table 165: Flush Event Queue Command

Field Value Length

Destination Address ‘0700’ 2

Source Address Any 2

Message Type 'C3' 1

IDTHREAD Thread Identifier assigned by the MAD-Handler 1

LDATA ‘0000’ 2

13.2.4.2 A Flush Event Queue response must conform to
the format defined Table 166.

13.2.4.3 The Event Handler must return the Response
Code of “successful operation” if the Handler
was able to successfully flush all events from
the queue.

13.2.4.4 The Event Handler must return the appropriate
Response Code if it is unable to empty the
event queue. No event must be removed from
the queue if the flush was unsuccessful.

Table 166: Response to Flush Event Queue command

Field Value Length

Destination Address Any 2

Source Address '0700' 2

Message Type 'FF' 1

IDTHREAD Thread Identifier of the request 1

LDATA ‘0002’ 2

Response Code Response Code 2

13.2.4.5 The Response Codes applicable to the Flush
Event Queue command are defined in Table
167.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

158

Table 167: Response Codes to Flush Event Queue command

Response Code Description

‘FF72’ No Events in Queue

'FFF3' Handler Error: generic message that an unspecified error has
occurred.

'FFF5' Handler busy: the Handler received the message but is unable to
process it at this moment. The requesting Handler must try again
later

'FFF6' Insufficient resources: the requested operation is valid, but
insufficient resources exist to successfully execute the requested
function.

'FFF7' Handler must be opened: the Handler is not in open status and
therefore cannot perform the requested action.

‘FFFB’ Unsupported operation: the Handler has received a command or
an associated data set that was unrecognized or unsupported.

13.3 Summary

Table 168: Event Handler-Specific commands

Destination

Address

Source

Address

Message Type Description

'0700' Any 'C0' Add Event

'0700' Any ‘C1’ Get Event

‘0700’ Any ‘C2’ Find Event

‘0700’ Any ‘C3’ Flush Event Queue

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

159

14. Secure Cryptographic Device
Processing
14.1 Overview

A terminal may support one or more Secure Cryptographic
Devices. The Card Reader may be integrated with the PIN Pad
or be an independent Secure Cryptographic Device. Terminals
not supporting a PIN Pad may support another Secure
Cryptographic Device, e.g. in a Secure Card Reader.

A Secure Cryptographic Device may utilize the same PKC
encryption scheme as a PIN Pad or for Secure Cryptographic
Devices not supporting PKC use a proprietary key management
scheme.

14.2 PIN Pad processing
In order to support applications that require use of PINs, this
specification defines a method of establishing and using a
secure zone between a PSAM application and the PIN
Pad/Secure Cryptographic Device. This facility provides the
following features:

• The acquirer’s online PIN Encryption keys are maintained
in the PSAM, rather than the PIN Pads.

• Application-specific logic for PIN verification is maintained
in the PSAM rather than the PIN Pad.

• Multiple acquirers, responsible for different applications,
may securely use the same PIN pad.

14.2.1 Physical Environment

14.2.1.1 The PIN Pad, with its keypad, must be contained
within a Secure Cryptographic Device (SCD). The
SCD may as well contain the Card Reader. The
SCD must also contain User Interface Display.
Each of these devices is addressed as specified
in Table 2.

14.2.1.2 The Card Reader shall if it is a stand-alone unit,
be a Secure Cryptographic Device by itself. The
Card Reader must transfer sensitive information
to other devices in a secure way.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

160

14.2.2 Establishing the Secure Zone
To transmit enciphered PINs between the PIN Pad and a PSAM
application, a secure zone must first be established between
the two entities. This is done using public key cryptography to
establish an initial symmetric PIN Session master key.
Subsequently, symmetric key cryptography (triple-DES) is used
for PIN encryption and message authentication between the
entities.

The PIN Pad and the PSAM each contain their own unique
asymmetric key pairs (SKPP, PKPP) and (SKPSAM, PKPSAM). The
public keys are certified by the PIN Pad Creator and by the
Acquirer’s agent, known as the PSAM Creator, respectively.
(For the remainder of this section, this entity will be referred
to as the Acquirer. If the PSAM’s are created by multiple
systems on behalf of the Acquirer, each system must have its
own unique PSAM Creator Identifier and must have a different
set of public keys.)

The required key hierarchy for the PIN Pad and the PSAM
application is illustrated in Figure 11. At the top of this key
hierarchy is a Certification Authority (CA), which is managed by
the Acquirer.

For the PSAM application, the CA creates an Acquirer
certificate on the Acquirer public key, and the Acquirer in turn
creates a PSAM certificate on the PSAM public key.

Similarly, for PIN Pads, the CA creates a PIN PAD Creator
certificate, and the PIN Pad Creator creates a PIN Pad
certificate.

The required keys and certificates are inserted into the PIN
Pad and PSAM during their personalization processes.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

161

Figure 11: PIN Pad and PSAM Key Hierarchy

14.2.3 Supported Configurations
The PIN processing supports a variety of POS configurations as
illustrated in Figure 12.

• Environment 1 illustrates a one-to-one relationship
between the PSAM and the PIN Pad, as may be found in a
stand-alone POS environment.

• Environment 2 illustrates multiple PIN Pads associated
with a single PSAM, as might be the case in a distributed
multi-lane stored environment.

• Environment 3 illustrates multiple PSAMs, owned by the
same Acquirer, which are associated with one or more PIN
Pads. This might be required in a multi-lane environment
where an Acquirer uses more than one PSAM for backup
and/or load balancing.

• Environment 4 illustrates an environment with multiple
PSAMs, which are owned by different Acquirers,
associated with one or more PIN Pads. Note that this
environment introduces some special security issues,
which are further discussed in Section 14.6.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

162

Figure 12: PIN Pad/PSAM Environments

14.2.4 Implementation
The PIN Processing defined in these specifications is
implemented within a TAPA application. Certain specific
functions must be securely performed within the PSAM itself.
For all other functions, the choice of whether the function is
performed within the PSAM or the MAD-Handler part of the
application is up to the application designer.

The functions that must be performed within the PSAM are
specified in section 14.6.3.

14.3 PIN Pad/PSAM Initialization
During PSAM initialization, each PSAM application that uses
PIN Processing must be synchronized with the PIN Pad(s). In
order to perform synchronization, the application engages in a
dialogue with the PIN Pad in order to establish a secure zone
using a shared symmetric key.

14.3.1.1 The application must begin the synchronization
process by sending the Get Key Check Value
command to the PIN Pad. The response
identifies the PIN Pad, and provides information
about its current keys, including a check value
(KCVPIN) of the current Transaction Session Key
(KSES). This check value must be compared to
the key check value of the PSAM’s current PIN
Session master key (KCVPSAM). If the check
values are the same, then the two entities are
currently synchronized and no further dialogue
is necessary.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

163

14.3.1.2 The application must send the Get PIN Pad
Public Key Record commands to the PIN Pad to
retrieve the PIN Pad certificates. These
certificates must be verified by the PSAM, and
the PIN Pad’s public key recovered from them.

14.3.1.3 The application must send PSAM certificates to
the PIN Pad, using the Verify PSAM Public Key
Certificate command. The PIN Pad must verify
the PSAM’s certificates and recover the PSAM’s
public key.

Note: The required processing for verifying the certificates and
recovering the public keys is defined in section 14.7.

14.3.1.4 The PSAM must generate an Initial Session Key,
which must be sent to the PIN Pad by the
application using the Submit Initial Key
command. The Submit Initial Key command
contains a public-key signature (PS), which must
be generated by the PSAM. The PIN Pad must
verify the PS and recover from it the Initial
Session Key.

Note: The required processing for generating and verifying the
PS and recovering the Initial Session Key is defined in section
14.7.

14.3.1.5 If the application control is implemented in the
PSAM, the MAD-Handler application must
initiate the synchronization process by sending
a Synchronize PIN Pad command to the PSAM
application for each PIN Pad with which the
PSAM must have a relationship. This command
is defined in section 10.3.

Figure 13 illustrates the message flow for the case where the
application control is implemented within the PSAM.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

164

Figure 13: PSAM/PIN Pad Initialization

14.4 PIN Processing

14.4.1 Secure Cryptographic Device State
In a device with a PIN Pad, there are special security
requirements that apply to the Secure Cryptographic Device
(SCD). These requirements ensure that PINs are never
revealed outside of the secure environment.

14.4.1.1 The SCD must have two possible states: Default
State and PIN Entry State.

14.4.1.2 The SCD must be in Default State after terminal
initialization.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

165

14.4.1.3 The SCD must be put into PIN Entry State after
the PIN Pad has received and authenticated a
valid Initiate PIN Entry command. The SCD must
not transition to PIN Entry State under any
other circumstances.

14.4.1.4 The SCD must be returned to Default State
when the PIN Pad receives a Terminate PIN
Entry command. This command is not
authenticated, and is not signed by the PSAM.

14.4.1.5 When the SCD is in Default State:

• The numeric keys on the PIN Pad must be
disabled.

• No authentication is required on messages
that send text to the User Display. Any
application may freely send display
messages to the User Interface Handler
display.

• The Processor Card Reader must only accept
plaintext Card commands sent using the ICC
Command message. The Verify Offline PIN
Command message must not be accepted.

14.4.1.6 When the SCD is in PIN Entry State:

• The numeric keys are enabled on the PIN
Pad.

• The User Interface Handler must only accept
“authorized” messages, which cause text to
be displayed. An authorized message
includes messages that contain a MAC
generated by the PSAM, which sent the
Initiate PIN Entry. Alternatively, it may be a
command that supplies a numbered
message that has been personalized into
the SCD as valid.

• The Processor Card Reader may accept
encrypted Card commands sent using the
Verify Offline PIN Command message.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

166

14.4.2 PIN Entry

14.4.2.1 The application must begin the process of PIN
entry by sending The Initiate PIN Entry
command to the PIN Pad. The PSAM must
generate a new set of PIN Session Keys, and use
the PIN MAC Session key (KSESMAC) to sign the
command.

This Initiate PIN Entry command is a “macro”
command, which causes the PIN Pad to perform
the following functions:

• The PIN Pad generates a new set of PIN
session keys.

• The MAC on the command is validated using
the new PIN session MAC key (KSESMAC).

• The Secure Cryptographic Device is placed
into PIN Entry State.

• The cardholder is prompted to enter a PIN
by, for example, sending a Display Message
with Message code ‘09’ to the User
Interface Display.

• The PIN Pad may then respond to the
Initiate PIN Entry command. (Depending on
the implementation, the response may be
sent before the consumer has finished
performing the PIN entry.)

14.4.2.2 The application must send an authenticated Get
PIN command to the PIN Pad in order to
retrieve the PIN block. The PIN Pad will respond
with the PIN Block encrypted under the current
PIN Encryption Session Key (KSESPIN). The PSAM
must validate the MAC in the response, and
decrypt the PIN Block.

14.4.2.3 During PIN entry, a symbol (for example, an
asterisk character “*”) must be displayed at the
user display instead of the PIN digit.

14.4.2.4 Error handling procedures, e.g. deletion of
incorrect entered PIN digits, must be handled
internally by the Secure Cryptographic Device.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

167

In some environments, the application may send additional
commands to the User Interface Handler while PIN Entry is in
progress. As noted previously, any commands that require text
to be displayed must be “authorized”.

In particular, the application may send a Confirm Amount
message during this period. This command must be
authenticated while in PIN Entry State.

The particular means of handling a Confirm Amount received
during PIN Entry is environment specific. One possible
implementation is to display the amount confirmation request
along with the PIN entry request. In this case a single key press
from the consumer will serve both as the amount confirmation
and as the PIN entry.

The following three diagrams (Figure 14, Figure 15 and

Figure 16) are examples of message flows within the Secure
Cryptographic Device, and of the user interface, during PIN
Entry. These sample diagrams illustrate the case where the
application control is within the PSAM.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

168

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

169

Figure 14: Separate PIN Entry and Amount Confirmation

Figure 15: Combined PIN Entry and Amount Confirmation

Figure 16: PIN Entry with no Amount Confirmation

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

170

14.5 PIN Verification
Depending on the requirements of the payment application,
PIN verification may be performed in one of three ways:

1. Online PIN verification, where the PIN is sent encrypted to
the acquirer for transmission to the card issuer.

2. Offline plaintext PIN verification, where the PIN is sent to
the card for verification in the clear.

3. Offline encrypted PIN verification, where the PIN sent to
the card for verification encrypted under a key known to
the card.

14.5.1 Online PIN Verification
If online PIN verification is to be performed, the
application sends the PIN to the Acquirer encrypted in
accordance with the method implemented by the
Acquirer. This might for example use a PIN Encryption key
established between the PSAM and Acquirer. The
approach taken, while it must comply with the PCI security
requirements scheme, is specific to the Acquirer and
outside the scope of this document.

14.5.1.1 The application must retrieve the PIN encrypted
under a key specified by the Acquirer. In order
to accomplish this, the PSAM must decipher the
PIN block using the PIN Encryption Session Key
(KSESPIN), and then re-encipher it as specified by
the Acquirer, using a PIN Encryption key shared
between the PSAM and the acquirer.

Note that this function may be performed
regardless of the state of the SCD.

Figure 17 illustrates an example of online PIN
handling.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

171

Figure 17: Online PIN Verification

14.5.2 Offline PIN Verification
When offline PIN verification is to be performed, the
application sends a command containing the PIN to the card.
This command may contain a plaintext PIN, or may contain a
PIN that has been encrypted under a key known to the card.
(For example, the Verify command is used in the EMV
application. Depending on the card’s requirements, the PIN
may be encrypted under the card’s public key.)

14.5.2.1 The PSAM must encrypt the PIN verification
command APDU under the PIN session
encryption key. The encrypted command must
be sent to the Processor Card Reader using the
Verify Offline PIN message. This message must
be added a MAC using the PIN MAC Session Key
(KSESMAC).

The message is authenticated and the
command APDU decrypted within the Secure
Cryptographic Device. The C-APDU is then
forwarded to the card.

14.5.2.2 The response to the Verify Offline PIN message
contains the card application’s response to the
PIN verification command. The response
message contains a MAC, which must be
verified by the PSAM.

Note that, as previously specified; offline PIN verification may
only be performed while the SCD is in PIN Entry State.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

172

14.6 Security Requirements

14.6.1 Business Entities

14.6.1.1 The Primary Acquirer is the entity responsible
for specifying, developing and maintaining the
PIN Pads and (at least) one of the PSAMs (even
if subcontracted to a third party). The Primary
Acquirer may be the Certification Authority.

14.6.1.2 The Certification Authority (CA) is responsible
for certifying the Acquirers` PIN processing
systems (including Host systems, PSAMs and
PIN Pads).

14.6.1.3 The certification of the Acquirer public keys
must represent the approval by the CA of the
Acquirer’s PSAM and Host-based PIN
processors.

14.6.1.4 The Card Schemes for which PIN processing is
performed must approve the CA.

14.6.1.5 If a Secondary Acquirer introduces a new
application (and PSAM), which requires PIN
entering, it is the responsibility of the CA to
certify that the level of security provided by the
Secondary Acquirer is sufficient.

14.6.1.6 The Primary Acquirer may permit any number
of (certified) Secondary Acquirer PSAMs to be
installed in their terminal and thereby have
access to the PIN Pad(s).

14.6.1.7 The Primary Acquirer must know the identities
of all the PSAMs in each of their terminals.

14.6.1.8 The Primary Acquirer must know the identities
of all the PIN Pads configured with each of their
PSAMs.

14.6.1.9 The IDPPCREATOR and IDPP must uniquely identify
the PIN Pad to the Acquirer. There is no
requirement that the PIN Pad be globally
identifiable.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

173

14.6.2 Physical Security Requirements

The requirements for the physical security of a payment and
PIN handing terminal are governed by the PCI SSC in ref. 11: e
“PCI PIN Transaction Security, PTS”.

Consequently, said requirements are out of scope for this
specification.

Figure 18: Secure Cryptographic Device

14.6.3 Logical Security Requirements

Also, the PCI SSC PTS requirements cover the logical security
requirements.

In addition to the PTS logical security requirements, a number
of requirements related to this application architecture are
defined below.

14.6.3.1 The terminal and/or PSAM application must
store the identities of each PSAM-PIN Pad
configured pair. This must be available to the
acquirer along with any other status
information required by the acquirer.

14.6.3.2 The PIN Pad private RSA key must remain
protected within the confines of the tamper
responsive PIN Pad. All cryptographic
operations using this key must be performed

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

174

within the tamper responsive PIN Pad.

14.6.3.3 The PSAM private RSA key must remain
protected within the PSAM. All cryptographic
operations using this key must be performed
within the PSAM.

14.6.3.4 The set of PIN Session keys (including the KSES
as well as the KSESPIN and KSESMAC, which are
derived from it), must be protected within the
Secure Cryptographic Device and PSAM. The
Initial Session Key, exchanged during
synchronization, may only appear outside of the
protected devices when encrypted as in the
Submit Initial Key command.

In order to so protect the Initial Session Key it is
necessary that the RSA and padding operations
defined in sections 7.2.4.2 and 7.2.4.4 be
performed within the protected devices.

14.6.3.5 The set of PIN Session keys must only be used in
the manner specified within this document;
they must not be used for any other purposes.

14.6.3.6 Only an authenticated Initiate PIN Entry
command may cause the Secure Cryptographic
Device to be put into PIN Entry state.

14.6.3.7 When in PIN Entry State the Display may only
show messages authenticated by the PSAM.
Authenticated messages includes generic write
string messages sent from the PSAM with a
MAC, as well as messages referenced by
“Message Codes”, which have been
personalized into the PIN Pad.

14.6.3.8 When in PIN Entry State, any commands that
require authentication must not be accepted by
the Secure Cryptographic Device, i.e. the PIN
pad if they do not contain a MAC from the
PSAM that sent the Initiate PIN Entry command.

14.6.4 Personalization Requirements

14.6.4.1 After personalization and initial
synchronization, the PIN Pad must contain the
data elements defined in Table 169.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

175

14.6.4.2 After personalization and configuration the
PSAM must contain the PIN related data
elements defined in Table 170.

14.6.4.3 The PIN Pad and PSAM must each be
personalized with at least one key/certificate
hierarchy chain and one CA public key.
Depending on the acquirer’s requirements for
the life span of the PIN Pad and PSAM and on
the CA’s requirements for migration to longer
key lengths, additional chains and CA public
keys may be inserted at personalization.

In the lists of data elements contained in the
PIN Pad and in the PSAM, it is assumed that:

• The PIN Pad is personalized with N1 key
pairs and with M2 PSAM CA public keys

• The PSAM is personalized with M1 key pairs
and with N2 PIN PAD CA public keys.

Note that it is possible for N1 = N2 and/or M1 =
M2.

Table 169: Data Elements contained in the PIN Pad

Description Data element Per PIN
Pad/SCD

Per
PSAM

Obtained at/with:

PIN Pad identifier IDPPCREATOR 1 Personalization

IDPP 1 Personalization

CA PP Key version VKPCA, PP N1 Personalization

PIN Pad Creator certificate PKCPPC N1 Personalization

PIN Pad Certificate PKCPP N1 Personalization

PIN Pads private key SKPP N1 Personalization

CA PSAM Key version VKPCA, PSAM M2 Personalization

CA PSAM public key PKCA, PSAM M2 Personalization

PSAM identifier RIDPSAM 1 Submit Initial Key command

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

176

Description Data element Per PIN
Pad/SCD

Per
PSAM

Obtained at/with:

IDPSAMCREATOR 1 Submit Initial Key command

IDPSAM 1 Submit Initial Key command

Initial Session Key KSESINIT 1 Submit Initial Key command

Table 170: Data Elements contained in the PSAM

Description Data element Per PSAM Per PIN
Pad/SCD

Obtained at/with:

PSAM identifier RIDPSAM 1 Personalization

IDPSAMCREATOR 1 Personalization

IDPSAM 1 Personalization

CA PSAM Key Version VKPCA, PSAM M1 Personalization

Acquirer certificate PKCACQ M1 Personalization

PSAM Certificate PKCPSAM M1 Personalization

PSAM private key SKPSAM M1 Personalization

CA PP Key version VKPCA, PP N2 Personalization

CA PP public key PKCA, PP N2 Personalization

PIN Pad identifier IDPPCREATOR 1 PIN Pad Certificate

IDPP 1 PIN Pad Certificate

 Initial Session Key KSESINIT 1 Randomly generated initial key

14.6.5 Minimum PSAM Requirements

14.6.5.1 The following PIN Pad processing functions
must be performed by the PSAM and not by the
application within the terminal:

• Generation of the ChallengePSAM presented
in the Get Key Check Value command.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

177

• Generation of the KCVPSAM. The KCVPSAM is
used to validate the KCVPP returned in the
response to the Get Key Check Value
command, and is sent to the PIN Pad in the
Initiate PIN Entry command.

• Generation of the PS signature presented in
the Submit Initial Key command.

• Generation of the MAC on all authenticated
commands sent to the PIN Pad.

• Verification of the MAC on all authenticated
responses received from the PIN Pad.

• Decryption and encryption of the PIN.

• Encryption of any commands used for PIN
verification being sent to the IC card.

14.7 Cryptographic Requirements

14.7.1 Verifying a Certificate - General Requirements
This section defines the general requirements for certificate
verification in accordance with ISO/IEC 9796-2. This
corresponds to the process defined in Annex E.2.1.3 of EMV
3.1.1.

Verification of a certificate begins with recovery of the
certificate data using the appropriate public key (either the CA
public key or the key resulting from verification of the next
higher level certificate) and its associated algorithm ALGP.

14.7.1.1 Recovery of the certificate data must be
performed using the process described in
Annex F.2.1 of EMV 3.1.1.

14.7.1.2 The recovery can only be performed if the
length of the certificate is the same as the
length of the modulus of the public key used in
the verification. If the lengths are different,
verification has failed.

14.7.1.3 After recovering the recoverable certificate
data, the header (first byte) and the trailer (last
byte) must be checked. The header must be
‘6A’ (if there is an associated remainder field) or
‘4A’ (if there is no associated remainder field)

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

178

and the trailer must be ‘BC’. If this is not the
case then verification of the certificate has
failed.

14.7.1.4 If the public key algorithm indicator is not
recognized then verification has failed.

14.7.1.5 The hash value is a 20 byte field immediately
preceding the trailer (last byte) of the
recovered certificate data and must be verified
according to the following procedure:

The following data must be concatenated in
order (left to right):

1. All data beginning with the format code in
the recovered certificate data (which is
always the second byte of the recovered
certificate data) up to and including the last
byte before the hash value, in the order in
which it appears in the recovered certificate
data.

2. The Public Key Remainder (PKR), if it
exists.

14.7.1.6 The hash algorithm indicated in the certificate
(SHA-1 is the only hash algorithm supported)
must be applied to the concatenation,
producing a 20-byte result. This result is
compared to the hash value recovered from the
certificate. If they are unequal, then certificate
verification has failed.

14.7.2 Authentication of the PIN Pad Public Key
The PSAM must determine the correct set of certificates to be
used for a transaction by examining the list of key versions
(VKPCA, PSAM) returned by the PIN Pad in its response to the Get
Key Check Value command.

PSAM Authentication of the PIN Pad public key consists of:

1. Determination that a public key hierarchy in the PIN Pad
can be processed by the PSAM.

2. Use of the Get PIN Pad Public Key Record command to
retrieve certificates from the PIN Pad.

3. Verification of the certificates.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

179

14.7.2.1 The PSAM must verify that a version (VKPCA, PP)
of the CA public key used to create the PIN Pad
Creator certificate (and so identified in the
response to the Get Key Check Value command)
matches a version number of a PKCA, PP in the
PSAM. If there is no match, the process is
aborted.

14.7.2.2 The PSAM issues Get PIN Pad public key record
commands to obtain certificate records from
the PIN Pad. The PSAM must verify the
certificates in sequence:

• The PIN Pad Creator certificate, using the
ALGCA,PP and the PKCA,PP specified by the
VKPCA,PP.

• The PIN Pad certificate, using the ALGPPC and
the PKPPC retrieved from the PIN Pad Creator
certificate.

14.7.2.3 The general checks in Section 14.7.1 must be
performed. If any of these fail then PIN Pad
public key authentication has failed.

14.7.2.4 The PSAM must also check that:

1. The IDPPCREATOR retrieved from the PIN Pad
Creator certificate is the same as that
provided in the response to the Get Key
Check Value command.

2. The Format code retrieved from the PIN Pad
Creator certificate is equal to 'C2'.

3. IDPPCREATOR and IDPP retrieved from the PIN
Pad certificate are the same as those
provided in the response to the Get Key
Check Value command.

4. The Format code retrieved from the PIN Pad
certificate is equal to 'C4'.

5. For each certificate, the month specified in
the Certificate Expiration Date is equal to or
later than the current month.

If any these checks fail, then the PIN Pad public

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

180

key has failed authentication.

14.7.3 Authentication of the PSAM Public Key
The PIN Pad contains one or more CA public keys (PKCA,PSAM)
for the purpose of authenticating the PSAM in the POS device.
The PSAM must contain the necessary certificates for use with
a PKCA,PSAM in the PIN Pad.

PIN Pad authentication of the PSAM public key consists of:

1. Determination by the PSAM that the PIN Pad can process a
public key hierarchy in the PSAM.

2. Use of the Verify PSAM Public Key Certificate command to
send certificates from the PSAM to the PIN Pad.

3. PIN Pad verification of the certificates.

14.7.3.1 After receiving and validating the response to
the Get Key Check Value command (with KCVs
not identical), the PSAM must verify that a
version of the CA public key (VKPCA,PSAM) in the
response to the Get Key Check Value command
matches a CA public key version under which
the PSAM is certified. If there is no match, the
process is aborted.

Certificates are provided to the PIN Pad using
the Verify PSAM Public Key Certificate as shown
in Section 7.2.3. The format of the certificate
records is described in Section 14.7.9.

14.7.3.2 The PSAM must send and the PIN Pad must
verify certificates in sequence:

• The Acquirer certificate, using the
ALGCA,PSAM and the PKCA,PSAM specified by the
VKPCA,PSAM.

• The PSAM certificate, using the ALGACQ and
the PKACQ retrieved from the Acquirer
certificate.

14.7.3.3 The general checks in Section 14.7.1 must be
performed. If any of these fail then PSAM public
key authentication has failed.

14.7.3.4 The PIN Pad must also check that

1. RIDPSAMCREATOR and IDPSAMCREATOR retrieved

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

181

from the PSAM certificate are the same as
the RIDPSAMCREATOR and IDPSAMCREATOR
retrieved from the Acquirer Certificate,
which in turn are the same as the
RIDPSAMCREATOR and IDPSAMCREATOR in the Get
Key Check Value command.

2. The Format code retrieved from the
Acquirer certificate is equal to 'A2'.

3. IDPSAM retrieved from the PSAM certificate is
the same as the IDPSAM provided in the Get
Key Check Value command.

4. The Format code retrieved from the PSAM
certificate is equal to 'A4'.

5. For each certificate the last day of the
month specified in the Certificate Expiration
Date is equal to or later than the PIN Pad
reference date (if it has one).

If any these checks fail, then the PSAM public
key has failed authentication.

14.7.4 DES and Triple DES
DES and Triple DES are block ciphers standardized in FIPS PUB
46-3.

DES, denoted DES()[], operates on a 64-bit input block and a
64-bit key to produce a 64-bit output block. The number of
effective key bits in a DES key is only 56 because every 8th bit
of the 64-bit key takes on the value of a parity bit, thereby
ensuring that there are an odd number of "1"s in each key
byte.

Triple DES, denoted DES3()[], is implemented using three
iterations of the DES block cipher with two independent DES
keys K1 and K2.

Specifically, the cipher text Y of an 8-byte input block X is

Y = DES3(K1, K2)[X] = DES(K1)[DES-1(K2)[DES(K1)[X]]].

Decryption is performed as

X = DES3-1(K1, K2)[Y] = DES-1(K1)[DES(K2)[DES-1(K1)[Y]]]

Note that for general encryption the padding and blocking
process in Section 14.7.5 should be adhered to.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

182

14.7.5 Encryption and Decryption

14.7.5.1 To encrypt any message, MSG, it must first be
padded to the right with ‘80’ and then with as
many ‘00’ bytes as necessary (possibly zero)
until it is a multiple of 8 bytes:

X : = MSG||'80'||'00'||…||'00';

14.7.5.2 X is then divided into 8-byte blocks X1, X2, .., Xk
and processed using Triple DES in Cipher Block
Chaining mode:

Y0 = ‘0000000000000000’

Yi = DES3(K1,K2)[Xi ⊕ Yi-1] for i = 1 to k

14.7.5.3 The encrypted message is

Enc(K1,K2)[MSG] : = Y = Y1 || … || Yk
Note that this process always involves message padding so
that when the message is an eight-byte PIN block the
ciphertext will be 16-bytes long.

14.7.5.4 In order to decrypt a ciphertext message the
encryption processed is merely reversed as
shown below.

1. If the ciphertext is not a multiple of 8 bytes
then decryption has failed.

2. Divide the ciphertext Y into 8 byte blocks:

Y : = Y1 || … || Yk

3. Compute the blocks Xi as follows:

Xi = DES3-1(K1,K2)[Yi] ⊕ Yi-1 for i = 1 to k,
where Y0 = ‘0000000000000000’

4. Concatenate the blocks Xi to form
X : = X1 || X2 || … || Xk

5. Strip off all trailing zero bytes (possibly
none) from X and then the final ‘80’ byte to
form MSG. If this last step is not possible
then decryption has failed.

6. If all the preceding steps are successful then

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

183

Dec(K1,K2)[Y] := MSG

14.7.6 MAC computation
MACs are computed using DES in Cipher Block Chaining Mode
with Triple DES applied to the last block.

The MAC computation is denoted by MAC(K1, K2)[D]. The
computation conforms to ISO/IEC 9797-1:1999 Mechanism 3,
using padding method 2 and DES as the block cipher. This is
also described in EMV annex E1.2.

14.7.6.1 Input D to the MAC is first padded to the right
with ‘80’. The result is then padded to the right
with enough bytes of ‘00’ (possibly none) to
make the result a multiple of 8 bytes long.

X: = MSG||'80'||'00'||…||'00';

14.7.6.2 X is then divided into 8-byte blocks X1, X2, .., Xk
and processed using Single DES in Cipher Block
Chaining mode:

Y0 = ‘0000000000000000’

Yi = DES(K1)[Xi ⊕ Yi-1] for i = 1 to k

14.7.6.3 Finally the 8-byte MAC is computed as

MAC(K1,K2)[D] := DES(K1)[DES-1(K2)[Yk]]

14.7.7 RSA Operations

14.7.7.1 All RSA operations must be performed as
described in reference 6, EMV, annexes E and F.

The RSA encipher function corresponds to the
Recover function defined in reference 6, EMV,
Annex F.

The RSA decipher function corresponds to the
Sign function defined in reference 6, EMV,
Annex F.

14.7.8 RSA Padding

14.7.8.1 The process of RSA padding of data D of length
96 bytes (768 bits) to a length L bytes (where L
≥113) is as defined below.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

184

1. Generate a 16 byte random number r and a
1-byte random number α whose most
significant bit is forced to ”0”.

2. Form G(r) by concatenating

SHA-1 (r || ‘00’) || SHA-1(r || ‘01’) || SHA-
1(r || ‘02’) ||etc… until its length equals or
exceeds L-17 bytes and then take the
leftmost L-17 bytes as G(r).

3. Pad D to the left with (L-113) bytes of binary
zeros. (D will now have a length of L-17
bytes).

4. Compute:

PAD(D) := α || (D ⊕ G(r)) || (r ⊕ SHA (D ⊕ G(r),
16))

14.7.8.2 D is recovered from PAD(D) as follows:

1. Define PAD(D) := α || β || γ, where

α is the first byte of PAD(D)
β is the next L-17 bytes of PAD(D), and
corresponds to D ⊕ G(r)
γ is the next (and final) 16 bytes of PAD(D)

2. Skip the first byte, α;

3. Compute R:= SHA(β, 16) ⊕ γ

4. Compute G(R)

5. D is the rightmost 96 bytes of β ⊕ G(R)

14.7.9 Certificate Formats

14.7.9.1 The Acquirer Certificate must have the format
defined in Table 171.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

185

Table 171: Format of the Acquirer Certificate (PKCACQ)

Field Contents Length

Header Certificate Header
‘6A’ - if there is an associated remainder field (PKRACQ),
‘4A’ - if there is no associated remainder field

1

Format Code Certificate Format (‘A2’) 1

RIDPSAM RID of the PSAM Creator 5

IDPSAMCREATOR Identifies PSAM Creator / Acquirer 4

CED Certificate expiration date (MMYY) 2

CSNACQ Binary number unique to this certificate assigned by the
certification authority (i.e. Primary Acquirer)

3

ALGH Identifies the algorithm used to create the hash value.
‘01’ indicates SHA-1.

1

ALGACQ Identifies the algorithm used to verify the next lower
level certificate

1

LPKMACQ Length of the modulus of the acquirer public key 1

Filler ‘00’ 1

PKMACQ Acquirer public key modulus or the leftmost bytes of
the modulus. Padded to the right with ‘BB’ if the length
of the modulus is less than LPKMCA, PSAM -41. If the
length of the modulus is > LPKMCA, PSAM -41, the
rightmost bytes (beginning in position LPKMCA, PSAM -40)
are kept in PKRACQ.

LPKMCA, PSAM -
41

Hash Result Hash of certificate data 20

Trailer ‘BC’ 1

14.7.9.2 The PSAM Certificate must have the format defined
in Table 172.

Table 172: Format of the PSAM Certificate (PKCPSAM)

Field Contents Length

Header Certificate Header
‘6A’ - if there is an associated remainder field (PKRPSAM),
‘4A’ - if there is no associated remainder field

1

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

186

Field Contents Length

Format Code Certificate Format (‘A4’) 1

RIDPSAM RID of the PSAM Creator 5

IDPSAMCREATOR Identifies PSAM Creator / Acquirer 4

IDPSAM Identifier of the PSAM 4

CED Certificate expiration date (MMYY) 2

CSNPSAM Binary number unique to this certificate assigned by the
PSAM Creator

3

ALGH Identifies the algorithm used to create the hash value.
‘01’ indicates SHA-1, and is the only algorithm
supported.

1

ALGPSAM Identifies the algorithm used to verify the dynamic
signature created by the PSAM

1

LPKMPSAM Length of the modulus of the PSAM public key 1

Filler ‘00’ 1

PKMPSAM PSAM public key modulus or the leftmost bytes of the
modulus. Padded to the right with ‘BB’ if the length of
the modulus is less than LPKMACQ-45. If the length of
the modulus is > LPKMACQ-45, the rightmost bytes
(beginning in position LPKMACQ-44) are kept in PKRPSAM.

LPKMACQ-45

Hash Result Hash of certificate data 20

Trailer ‘BC’ 1

14.7.9.3 The PIN Pad Creator certificate must have the
format defined in Table 173.

Table 173: Format of the PIN Pad Creator Certificate (PKCPPC)

Field Contents Length

Header Certificate Header
‘6A’ - if there is an associated remainder field (PKRPPC),
‘4A’ - if there is no associated remainder field

1

Format Code Certificate Format (‘C2’) 1

IDPPCREATOR PIN Pad Creator ID 4

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

187

Field Contents Length

CED Certificate expiration date (MMYY) 2

CSNPPC Binary number unique to this certificate assigned by the
certification authority

3

ALGH Identifies the algorithm used to create the hash value.
‘01’ indicates SHA-1.

1

ALGPPC Identifies the algorithm used to verify the next lower
level certificate

1

LPKMPPC Length of the modulus of the PIN Pad Creator public
key

1

Filler ‘00’ 1

PKMPPC PIN Pad Creator public key modulus or the leftmost
bytes of the modulus. Padded to the right with ‘BB’ if
the length of the modulus is less than LPKMCA, PP - 36. If
the length of the modulus is > LPKMCA, PP -36, the
rightmost bytes (beginning in position LPKMCA, PP - 35)
are kept in PKRPPC.

LPKMCA, PP -36

Hash Result Hash of certificate data 20

Trailer ‘BC’ 1

14.7.9.4 The PSAM Certificate must have the format
defined in Table 174.

Table 174: Format of the PIN Pad Certificate (PKCPP)

Field Contents Length

Header Certificate Header
‘6A’ - if there is an associated remainder field (PKRPP),
‘4A’ - if there is no associated remainder field

1

Format Code Certificate Format (‘C4’) 1

IDPPCREATOR Unique identifier of the PIN Pad Creator 4

IDPP PIN Pad Identifier 4

CED Certificate expiration date (MMYY) 2

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

188

Field Contents Length

CSNPP Binary number unique to this certificate assigned by the
certification authority (i.e. PIN Pad CA)

3

ALGH Identifies the algorithm used to create the hash value.
‘01’ indicates SHA-1, and is the only algorithm
supported.

1

ALGPP Identifies the algorithm used to verify the dynamic
signature created by the PIN Pad

1

LPKMPP Length of the modulus of the PIN Pad public key 1

Filler ‘00’ 1

PKMPP PIN Pad public key modulus or the leftmost bytes of the
modulus. Padded to the right with ‘BB’ if the length of
the modulus is less than LPKMPPC - 40. If the length of
the modulus is > LPKMPPC - 40, the rightmost bytes
(beginning in position LPKMPPC - 39) are kept in PKRPP.

LPKMPPC - 40

Hash Result Hash of certificate data 20

Trailer ‘BC’ 1

14.7.10 Expiration of Certificates

14.7.10.1 A certificate ceases to be valid after its
Certificate Expiration Date. Acquirers must
ensure that CA public keys are no longer used
after their expiry date as dictated by the CA.

14.7.11 Replacement of Keys and Certificates

14.7.11.1 It must not be possible to change the PSAM and
PIN Pad private keys (and associated public key
certificates) after personalization.

Note that this may impact the minimum length
of the PIN PAD Creator Public Key and the PIN
Pad Public Key chosen.

14.7.12 Revocation of Certificates
The revocation of certificates is not described by this
specification. If the acquirer’s implementation permits
certificate replacement, then that process may be used to
replace revoked certificates.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

189

14.7.13 Key Lengths

14.7.13.1 The minimum and maximum length of the
public key modulus (LPKM) must be according
to Table 175.

Table 175: Length of Public Key Modulus

 Minimum length (bits) Maximum length (bits)

LPKMCA, PSAM 1024 1952 (244 bytes)

LPKMCA, PP 1024 1952 (244 bytes)

LPKMACQ 1024 1664 (208 bytes)

< LPKMCA, PSAM

LPKMPPC 1024 1664 (208 bytes)

< LPKMCA, PP

LPKMPSAM 1024 1536 (192 bytes)

< LPKMACQ

LPKMPP 1024 < LPKMPPC

Note: Use of shorter RSA keys will limit the useful lifetime of the keys.
Some implementations may require longer minimum key lengths than are
specified here.

14.7.13.2 The key length (in bits) of the RSA moduli must
always be an integer multiple of 16.

14.8 PIN Pad-less Secure Cryptographic Device
Terminals that do not support a PIN Pad, the keys protecting
the exchange of data with the PSAMs need to be created in
another Secure Cryptographic Device, e.g. a Secure Card
Reader. This Secure Cryptographic Device may be created
using the same PKC key management scheme as for a PIN Pad
and must derive the keys necessary for protecting the data
exchanged.

Other key management schemes may be used for the KEYCDP.
These are out of scope for this specification.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

190

14.9 Response Codes
This section contains a summary of Response Codes that may
be generated by various components of the terminal
application.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

191

Table 176: Summary of Response Codes

Response Code Source Address Description

Router

'FFF0' None Invalid Source Address: the source
address does not match the originator
of the message.

'FFF1' None Invalid Destination Address: the
message cannot be delivered because it
contains an invalid destination address.

Common Handler Response Codes

‘0000’ Any Successful

‘FF34’ ‘0302’/‘0304’
‘0402’/‘0404’

Unknown Message Code

'FFF2' Any Time-out: the requested operation is
valid, but some external event
necessary for the proper execution
failed to arrive in time.

'FFF3' Any Handler Error: generic message that an
unspecified error has occurred.

'FFF4' Any Handler must be initialized: the Handler
cannot perform the requested action
until it has been initialized.

'FFF5' Any Handler busy: the Handler received the
message but is unable to process it at
this moment. The requesting Handler
must try again later

'FFF6' Any Insufficient resources: the requested
operation is valid, but insufficient
resources exist to successfully execute
the requested function.

'FFF7' Any Handler must be opened: the Handler is
not in open status and therefore cannot
perform the requested action.

'FFF8' Any Handler is already open

'FFF9' Any Handler already closed

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

192

Response Code Source Address Description

'FFFA' Any Handler cannot be opened: an error
indicating that the Handler cannot be
opened.

'FFFB’ Any Unsupported operation: the Handler
has received a command or an
associated data set that was
unrecognized or unsupported.

'FFFC’ Any Handler cannot be closed: an error
indicating that the Handler cannot be
closed.

'FFFD’ Any Transaction interrupt request: an
interrupt indicating that the current
transaction shall be terminated
gracefully

‘0XXX’ Any Warning Codes: Reserved for
Proprietary Use

‘1XXX’ Any Error Codes: Reserved for Proprietary
Use

PSAM Handler (0)

'FF23' '0202'/'0203' Card did not respond

'FF24' '0202'/'0203' No card in reader

'FF25' '0202'/'0203' Unrecoverable Transmission error

'FF26' '0202’/’0203' Card buffer overflow

'FF27' '0202’/’0203' Unrecoverable Protocol error

'FF28' '0202’/’0203' Response has no status words

'FF29' '0202’/’0203' Invalid buffer

'FF2A' '0202’/’0203' Other card error

Multi-Application Driver Handler (1)

Card Handler (2)

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

193

Response Code Source Address Description

'FF20' ‘0201’ Unrecoverable Transmission error
between reader and magnetic stripe

'FF21' '0201' Output buffer overflow

'FF22' '0201' Write operation failed

'FF23' '0202’/’0203' Card did not respond

'FF24' '0202’/’0203' No card in reader

'FF25' '0202’/’0203' Unrecoverable Transmission error

'FF26' '0202’/’0203' Card buffer overflow

'FF27' '0202’/’0203' Unrecoverable Protocol error

'FF28' '0202’/’0203' Response has no status words

'FF29' '0202’/’0203' Invalid buffer

'FF2A' '0202’/’0203' Other card error

'FF2B' '0202’/’0203' Card partially in reader

‘FF82’ ‘0202’ Authentication Error (MAC validation
failed

‘FF87’ ‘0202’ Secure Cryptographic Device not in PIN
Entry State

User Interface Handler (3)

'FF30' ‘0302’ Out of border

'FF31' ‘0302’ Printer out of paper

'FF32' ‘0302’ Printer has signalled an error

'FF33' ‘0302’ Printer does not appear to be connected
and online

‘FF34’ ‘0302’/’0304’ Unknown message code

‘FF35’ ‘0302’/’0304’ Code Table not supported

‘FF80’ ‘0301’ No KCV available, KSES not present

‘FF81’ ‘0301’ Wrong PIN Pad ID

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

194

Response Code Source Address Description

‘FF82’ ‘0300’/‘0301’/
’0302’

Authentication Error (MAC validation
failed)

‘FF83’ ‘0301’ PSAM Identifier not recognized

‘FF84’ ‘0301’ Parameters out of range

‘FF85’ ‘0301’ Key Check values not identical,
synchronization necessary

‘FF86’ ‘0301’ PIN not available

‘FF87’ ‘0301’ Secure Cryptographic Device not in PIN
Entry State

‘FF88’ ‘0301’ Termination Failed

‘FF89’ ‘0301’ Record not found

‘FF8A’ ‘0301’ Signature Error

‘FF8B’ ‘0301’ Hash Error

‘FF8C’ ‘0301’ Certificate Error

‘FF8D’ ‘0301’ Hash algorithm not supported

‘FF8E’ ‘0301’ PK Algorithm not supported

‘FF8F’ ‘0301’ Hash result invalid

‘FF90’ ‘0301’ RSA key mismatch. VKP not recognized

‘FF91’ ‘0301’ Certificate format error

‘FF92’ ‘0301’ Certificate expired

‘FF93’ ‘0301’ Certificate ID mismatch

Merchant Application Handler (4)

'FF30' ‘0402’ Out of border

'FF31' ‘0402’ Printer out of paper

'FF32' ‘0402’ Printer has signalled an error

'FF33' ‘0402’ Printer does not appear to be connected
and online

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

195

Response Code Source Address Description

‘FF34’ ‘0402’/’0404’ Unknown message code

‘FF35’ ‘0402’/’0404’ Code Table not supported

‘FF40’ Any Invalid Currency

‘FF41’ Any Invalid Currency Exponent

‘FF42’ Any Invalid Transaction Results

Data Store Handler (5)

'FF50' ‘0500’ Invalid record pointer. Record pointer
outside the range defined for the
current structure (Has not been added
yet).

'FF51' ‘0500’ Invalid File ID

'FF52' ‘0500’ Record too large

'FF53' ‘0500’ Search key too large

'FF54' ‘0500’ File creation error.

'FF55' ‘0500’ File could not be accessed.

'FF56' ‘0500’ File seek error. A selected record could
not be found.

'FF57' ‘0500’ File read error.

'FF58' ‘0500’ File write error.

‘FF59’ ‘0500’ Search key already existing

Communication Handler (6)

'FF60' ‘0600’ Invalid session setup parameters.

'FF61' ‘0600’ No connection

‘FF62’ ‘0600’ Connection in progress

Event Handler (7)

‘FF72’ ‘0700’ No Events in Queue

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

196

Response Code Source Address Description

‘FF73’ ‘0700’ No Matching Events in Queue

14.10 Message Codes
This section contains a list of Message codes that can be used
to send pre-defined text messages to displays or to printers.

Table 177: Message Codes

Message Code Text Message

01 (Amount)

02 (Amount) OK?

03 Approved

04 Call your Bank

05 Cancel or Enter

06 Card Error

07 Declined

08 Enter Amount

09 Enter PIN

0A Incorrect PIN

0B Insert Card

0C Not Accepted

0D PIN OK

0E Please Wait

0F Processing Error

10 Remove Card

11 Use Chip Reader

12 Use Mag Stripe

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

197

Message Code Text Message

13 Try Again

14 – 3F Reserved for future definition
by EMV

40 System Error, Please Try Again

41 Invalid Card

42 Card out-of-order

43 Expired Card

44 Insufficient value

45 Card not present

46 Data Store full

47 Timed Out

48 Thank You

49 Not Available

4A Print Receipt?

4B Cancel

4C Make Selection

4D Incorrect Amount

4E Welcome

4F Signature

50 Application Menu

51 Transaction Menu

52 Purchase

53 Page

54 PIN Blocked

55 Enter new PIN

56 PIN Changed

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

198

Message Code Text Message

57 PIN Unchanged

58 2 PINS not same

59 Confirm new PIN

5A Change PIN

5B Unblock PIN

5C PIN not blocked

5D PIN Unblocked

5E Calling...

5F Transmitting...

60 Receiving...

61 Comms Error

62 Disconnecting

63 Trans Log Upload

64 Retrying

65 Upload Done

66 Upload Failed

67 No Records

68 Debit :

69 Credit :

6A Credit Reversal:

6B Cash Load :

6C Balance:

6D New Balance:

6E Specify Amount

6F Recovery Needed

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

199

Message Code Text Message

70 Insufficient Funds

71 Recovery Failed

72 Recovery Done

73 Money taken

74 Show Balance

75 Statement Review

76 by issuer

77 Upload Time

78 Start (HH:MM):

79 End (HH:MM):

7A Prefix Nr

7B Totals

7C Auth X25 Nr

7D Upload X25 Nr

7E Nr Trials :

7F Delay :

80 Onl Auth. Data

81 Onl Upload Data

82 Get cash

83 Unblock Appli.

84 Pre-Autho.

85 Pre Completion

86 Refund

87 Cancellation

88 D/C Menu

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

200

Message Code Text Message

89 Precomp. Number

8A GET Merchant PIN

8B Data required in the database

8C Interval (MM)

8D Number Attempts

8E Load Stop List

8F Pick up Card

90 Denied:

91 View Balance?

92 Do not honour

93 Expired card

94 Suspected fraud

95 PIN exceeded

96 Refer Issuer

97 Not card number

98 Excessive amount

99 Counterfeit card

9A Format error

9B Card issuer or

9C Switch inop.

9D Bad Routing

9E Sys malfunction

9F Yes

A0 No

A1 Capture Card

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

201

Message Code Text Message

A2 Money not taken

A3 Exp. date (YYMM)

A4 Enter PAN

A5 Enter Term ID

A6 Params Required

A7 Forced online

A8 Sale:

A9 Refund:

AA Purse empty

AB Set currency

AC Currency changed

AD Terminal id :

AE Exceeds limit

AF Invalid currency

B0-DF Reserved for Future Use

E0-FF Reserved for Proprietary Use

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

202

15. Data Elements
15.1.1 AIDN
Purpose: To indicate an AID that is supported by the PSAM, and which PSAM

application is to be used to process transactions for that AID. Used
during the Application Selection process.

Format: 5-16 bytes (binary).

Contents: RID || PIX where the RID is the five-byte global registered identifier as
specified in ISO/IEC 7816-5 and the PIX (0-11 bytes) is at the scheme
provider’s discretion.

15.1.2 ALG
Purpose: To indicate the public key algorithm used in public key cryptography

during the synchronization between a PIN Pad and a PSAM application.
It also indicates the value of the public key exponent that is certified by
this certificate.

Format: 1 byte (binary).

Content: See Table 178

Remarks: Used to identify the algorithm that is used to verify the next lower level
certificate or signature. The subscript indicates the certificate containing
the ALG.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

203

Table 178: Coding of ALG

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

x x x x x Value of public key exponent

0 0 0 0 1 2

0 0 0 1 0 3

1 0 0 0 0 216+1

All other values RFU

 x x x Usage of Public Key Algorithm

 0 0 1 - RSA Dynamic Authentication

 x x x - (xxx ≠ 001) RFU

15.1.3 ALGH
Purpose: To indicate the algorithm used to produce a hash value in a public key

certificate or signature.

Format: 1 byte (binary).

Content: '01' indicates SHA-1. SHA-1 is the only algorithm supported.

15.1.4 Amount Confirmed Indicator
Purpose: Indicates whether the amount has been confirmed.

Format: 1 byte (binary).

Content: '00' - the amount is confirmed
'01' - the amount has not been confirmed.
‘02’ – the transaction has been cancelled by the user

Remarks: Values other than '00', '01' and '02' are RFU.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

204

15.1.5 Application Status Words (ASW1, ASW2)
Purpose: Indicates the results of a “process” command sent to the PSAM.

Format: 2 bytes (binary).

Content: As defined in section 10.3.2

15.1.6 ATR (Answer To Reset)
Purpose: Conveys the ATR returned by an IC card.

Format: Variable length, binary format

Content: As defined in ISO 7816-3 and EMV

15.1.7 [C-APDU]
Purpose: To hold an encrypted Card Command being sent to an ICC.

Format: Variable length

Content: A C-APDU encrypted under the current PIN session encryption key
(KSESPIN).

15.1.8 Card Command
Purpose: To convey a Command APDU being sent to an IC card.

Format: variable length

Content: A C-APDU as defined in reference 3, ISO/IEC 7816-4.

15.1.9 Card Response
Purpose: To convey a Response APDU from an IC card.

Format: variable length

Content: A complete R-APDU, including the Status Words, as defined in reference
3, ISO/IEC 7816-4.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

205

15.1.10 CHALLENGE
Purpose: A number generated by the PIN Pad or PSAM, which allows each to

authenticate that messages have been received from a valid device.

Format: 4 bytes (binary).

Content: Any non-repeating or random value.

Remarks: The subscript indicates whether the PIN Pad or the PSAM generated the
Challenge.

15.1.11 CLA (Class byte)
Purpose: To form a command code.

Format: 1 byte (binary).

Remarks: CLA is the ISO assigned instruction class byte, which in conjunction with
the INS field forms the command code. See ISO/IEC 7816-4 for a
discussion of the Class byte.

15.1.12 CNTAID
Purpose: To indicate the number of AIDs being returned in the response to a Get

Supported AIDs command.

Format: 1 byte (binary).

Content: 8-bit value, coded as an unsigned integer.

Remarks: Used with the command "Get Supported AIDs".

15.1.13 CNTSUBADDRESS
Purpose: To indicate the number of sub-addresses being returned in the response

to the Get Handler Addresses command

Format: 1 byte (binary).

Content: Holds the number of sub-addresses returned.

Remarks: Used with the command Get Handler Addresses

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

206

15.1.14 Code Table Index
Purpose: Identifies the character set in which display, printer or key-entered data

is coded.

Format: BCD, 1 byte

Content: ‘00’ indicates the Command Character Set defined in reference 6, EMV
Annex C.
‘nn’ indicates a code table as defined in reference 8, ISO 8859.

15.1.15 CSN (Certificate Serial Number)
Purpose: Unique number assigned to the certificate by the creator of the

certificate.

Format: 3 bytes (binary).

Content: A unique number for a certificate.

15.1.16 CURR (Currency)
Purpose: Identifies the currency for a transaction

Format: BCD, 3 bytes in the form ‘0c cc 0e’, where ccc is the code assigned to the
currency by ISO 4217, and e is the exponent.

Content: CURR contains both the currency code (CURRC) and the exponent
(CURRE)

15.1.17 CURRC (Currency Code)
Purpose: Identifies the currency for a transaction

Format: BCD, 2 bytes in the form ‘0c cc’, where ccc is the code assigned to the
currency by ISO 4217.

Content: CURRC contains only the currency code

15.1.18 CURRE (Currency Exponent)
Purpose: Identifies the exponent of the currency of a transaction

Format: BCD, 1 bytes in the form ‘0e’

Content: CURRE contains only the currency exponent

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

207

15.1.19 Destination Address (DAD)
Purpose: To identify the device to which a terminal message must be delivered.

Format: 2 bytes (binary).

Content: A handler address.

15.1.20 DS (Digital Signature)
Purpose: A digital signature created by the PSAM to allow the PIN Pad to

authenticate the PSAM during synchronization

Format: Variable length (binary) (The length of the PSAM public key modulus
(LPKMPSAM) determines the length of DS.

Content: See section 7.2.4

15.1.21 DTHRPDA (Transaction date and time)
Purpose: To indicate a date and time.

Format: 5 bytes (BCD).

Content: 10 BCD digits: YYMMDDHHMM.

15.1.22 Enc(KSESPIN)[PIN]
Purpose: To hold an encrypted PIN block.

Format: 16 bytes (binary).

Content: Encrypted PIN block.

Remarks: See Table 83 for the format of the PIN block.

15.1.23 Error Response Data
Purpose: To hold application specific response data.

Format: Variable length.

Content: Application-specific error response data.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

208

15.1.24 Event Type Code
Purpose: To indicate the type of event.

Format: 1 byte (binary).

Content: See Table 157.

15.1.25 Event Location
Purpose: To indicate the handler that posted an event.

Format: 2 bytes (binary).

Content: A handler address.

15.1.26 File Identifier (IDFILE)
Purpose: Identifies a particular file that has been created in the data store.

Format: 2 bytes (binary).

Content: The unique identifier of a file.

Remarks A value of zeros (‘0000’) is not valid

15.1.27 Filler
Purpose: Used to fill out a record or block

Format: 1 byte (binary).

15.1.28 Format Code
Purpose: To indicate the type of certificate.

Format: 1 byte (binary).

Content: 8-bit value, unsigned integer.

Remarks: Examples of Format Codes: 'C2' = PKCPPC, 'C4' = PKCPP, 'A2' = PKCACQ, 'A4'
= PKCPSAM

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

209

15.1.29 Handler Category Address
Purpose: Indicates the address of a Handler Category

Format: 1 byte (binary).

Content: Each device handler category is assigned a one-byte address. Individual
handlers are located by their handler category address, followed by a
sub-handler address.

15.1.30 Handler Sub-Address
Purpose: In combination with the Handler category address, identifies a particular

handler.

Format: 1 byte (binary)

Content: Each device handler is assigned a two-byte address. Individual handlers
are located by their handler category address, followed by a sub-handler
address.

15.1.31 Historical Bytes
Purpose: The historical bytes are an optional element in the Answer-to-Reset

from an IC card. The historical bytes designate general information, for
example, the card manufacturer, the chip inserted in the card, the
masked ROM in the chip, the life-cycle state of the card.

Format: 0-15 bytes (binary).

Remarks: The contents of the historical bytes are at the discretion of the card
issuer. See reference 3, ISO/IEC 7816-4 for additional information.

15.1.32 IDPP (PIN Pad ID)
Purpose: To identify a PIN Pad

Format: 4 bytes (binary).

Content: Serial number of the PIN Pad assigned by the PIN Pad Creator.

Remarks: Assigned by the entity identified by IDPPCREATOR. With the IDPPCREATOR
identifies a PIN Pad within a POS device.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

210

15.1.33 IDPPCREATOR (Identifier for the Creator of a PIN Pad)
Purpose: To identify the system or entity that generates personalization data for

PIN Pads and assigns the IDPP.

Format: 4 bytes (binary).

Content: Number assigned to the PIN Pad Creator.

Remarks: Assigned by the primary acquirer. With the IDPP identifies a PIN Pad
within a POS device.

15.1.34 IDPSAM (Identifier for a PSAM)
Purpose: To identify a PSAM.

Format: 4 bytes (binary).

Content: Serial number of the PSAM assigned by the PSAM Creator.

Remarks: Assigned by the entity identified by IDPSAMCREATOR. With the RIDPSAM and
the IDPSAMCREATOR uniquely identifies a PSAM.

15.1.35 IDPSAMAPP (TAPA PSAM Application Identifier)
Purpose: To identify a particular PSAM application

Format: 2 bytes (binary).

Content: • The first nibble is coded as follows:‘0’-‘7’ = application specification
defined by the international payment schemes.
 ‘0’ = CEP application, ‘1’-‘7’ = RFU

• ‘8’-‘F’ = proprietary application specification.

15.1.36 IDPSAMCREATOR (Identifier for the Creator of the PSAM)
Purpose: To identify the system or entity which generates personalization data

for PSAMs and assigns the IDPSAM.

Format: 4 bytes (binary).

Remarks: Assigned by the owner of the RIDPSAM. With the RIDPSAM, uniquely
identifies the entity creating a PSAM.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

211

15.1.37 IDSCHEME (Acquirer reference number)
Purpose: Used to identify a particular AID or scheme supported by the Acquirer

Format: 1 byte (binary).

Remarks: Assigned by the Acquirer or processor.

15.1.38 INS (Instruction byte)
Purpose: To identify a command.

Format: 1 byte.

Remarks: Used in conjunction with CLA to identify a command. See ISO/IEC 7816-
4.

15.1.39 KCV (Key Check Value)
Purpose: To verify the status of the session key shared between a PSAM and a PIN

Pad.

Format: 3 bytes (binary).

Content: The 3 most significant bytes of the result of a triple-DES encryption of an
8-byte block of binary zeros.

Remarks: The subscript indicates whether the PSAM or the PIN Pad computed the
KCV.

15.1.40 KEKCDP
Purpose: A key encryption key used to protect the master session key used during

transfer from a secure Card Reader to the PSAM. Part of an independent
key chain used for Cardholder Data Protection (CDP) between the PSAM
and a Secure Cryptographic Device in a Terminal without a PIN Pad. The
initial value of the key is loaded into the PSAM during configuration.

Format: 16 bytes (binary).

15.1.41 Key Data
Purpose: The data to be used as a unique key for a data store record.

Format: LENSKEY bytes (binary).

Content: Any.

Remarks: Used when searching, adding and deleting data in records in files.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

212

15.1.42 KEYCDP
Purpose: A master session key used to derive session keys that are used for

Cardholder Data enciphering and MACs between a Secure Cryptographic
Device and the PSAM.

Format: 16 bytes (binary).

15.1.43 KSES
Purpose: A master session key used to derive session keys that are used for PIN

encryption and MACs between the PIN Pad and the PSAM.

Format: 16 bytes (binary).

15.1.44 KSESCDP
Purpose: To encipher Cardholder Data when transferred between the PSAM and

the Terminal.

Format: 16 bytes (binary).

Remarks: Generated by the PSAM based on the KEYCDP delivered from a Secure
Cryptographic Device.

15.1.45 KSESINIT
Purpose: To provide an initial key which is used to derive the first session key.

Format: 16 bytes (binary).

Remarks: Generated by the PSAM during synchronization with the PIN Pad.

15.1.46 KSESMAC
Purpose: A session key used to authenticate messages exchanged between the

PSAM and the PIN Pad.

Format: 16 bytes (binary).

Remarks: Derived from the current master session key (KSES).

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

213

15.1.47 KSESPIN
Purpose: A session key used to encrypt PIN data being exchanged between the

PSAM and the PIN Pad.

Format: 16 bytes (binary).

Remarks: Derived from the current master session key (KSES).

15.1.48 Lc (Data length)
Purpose: To indicate the number of bytes present in the data field of a command.

Format: 1 byte (binary).

Content: 8-bit value, coded as an unsigned integer.

Remarks: Omitted if no data is sent in a command. See ISO/IEC 7816-4.

15.1.49 Le (Expected data length)
Purpose: To indicate the maximum number of bytes expected in a response to a

command.

Format: 1 byte (binary).

Content: 8-bit value, coded as an unsigned integer.

Remarks: A value of ‘00’ indicates that the card must return all available data.
Please see ISO/IEC 7816-4.

15.1.50 LDATA (Data field length)
Purpose: To indicate the length of a data field in a Terminal Message.

Format: 2 bytes (binary).

Remarks Message data lengths of at least 512 bytes must be supported. Terminal
applications must only rely on the ability to send longer messages in a
proprietary environment.

15.1.51 LEN
Purpose: To indicate a length.

Format: 2 bytes (binary).

Content: 16-bit value, unsigned.

Remarks: Used to indicate a number of bytes to read.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

214

15.1.52 LENAID,N
Purpose: To indicate the length of the N’th AID in the response to the Get

Supported AIDs PSAM command.

Format: 1 byte (binary).

Content: 8-bit value, coded as an unsigned integer.

15.1.53 LENREC
Purpose: To indicate the length of a record.

Format: 2 bytes (binary).

Content: 16-bit value, coded as an unsigned integer.

Remarks: If the LENREC is coded as '0000' in an Add Record message, the maximum
record size must be reserved. The actual record size is maintained as
‘0000’ until a subsequent “Update Record” message

15.1.54 LENSKEY
Purpose: Indicates the length of the search key assigned to a file in the data store

Format: 1 byte (binary).

Content:

Remarks:

15.1.55 Length
Purpose: To indicate a length.

Format: 1 byte (binary).

Content: 8-bit value, coded as an unsigned integer.

15.1.56 LPKE (Length of a Public Key Exponent)
Purpose: To indicate the length of a Public Key Exponent.

Format: 1 byte (binary).

Remarks: The subscript indicates the exponent being referred to.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

215

15.1.57 LPKM (Length of Public Key Modulus)
Purpose: To indicate the length in bytes of a Public Key Modulus.

Format: 1 byte (binary).

Remarks The subscript indicates the modulus being referred to.

15.1.58 MAC
Purpose: A MAC providing authentication of a data exchange between a PSAM

and PIN Pad.

Format: 8 byte (binary).

Remarks: The subscript indicates the particular message in which the MAC is
located. The data being MAC’ed is specified in each applicable message.

15.1.59 Magnetic Stripe Data
Purpose: To hold a set of data from a track.

Format: Variable

Content: Any.

Remarks: Includes u, Len and track Data.

15.1.60 Message Code
Purpose: To indicate a pre-defined message to be displayed or printed

Format: 1 byte (binary).

Content: See Table 177

15.1.61 Message Data
Purpose: The data portion of a Terminal message.

Format: Variable

Content: Specific to the Message Type

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

216

15.1.62 Message Type
Purpose: To identify the type of message.

Format: 1 byte (binary).

Content: SeeTable 4, Table 5 and Table 6.

Remarks: If Message Type is 'FF' the message is a response, any other value
indicates the message type of a command.

15.1.63 NUMFILE
Purpose: To indicate the number of files to create.

Format: 1 byte (binary).

Content: 8-bit value, coded as an unsigned integer.

15.1.64 Pad Pattern
Purpose: Padding bytes required in a public key certificate or signature

Format: variable length (binary).

Content: Successive bytes containing 'BB'

15.1.65 PK (Public Key)
Purpose: A public key is used by an entity to verify a certificate or signature

created by the owner of the public key. The public key of a PIN Pad is
used by the PSAM for the purpose of encrypting messages to the PIN
Pad.

Format: Variable length (binary).

Remarks: The subscript indicates the entity to which the public key belongs. A
public key consists of the modulus (PKM) and the exponent (indicated in
the ALG field).

15.1.66 PKC (Public Key Certificate)
Purpose: A public key certificate is created by the next higher entity in the

certificate hierarchy.

Format: Variable length (binary). The length is the same of the length of the
signing public key modulus.

Remarks: The subscript indicates the entity to which the certificate belongs.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

217

15.1.67 PKM (Public Key Modulus)
Purpose: A public key modulus is a component of a public key.

Format: Variable length (binary).

Remarks: The subscript indicates the entity to which the modulus belongs.

15.1.68 PKR (Public Key Remainder)
Purpose: Contains the rightmost bytes of the Public Key Modulus when the entire

modulus will not fit into the public key certificate.

Format: Variable length (binary).

Remarks: The subscript indicates the associated public key.

15.1.69 P1, P2 (Parameter bytes)
Purpose: To set up parameters for a PSAM command

Format: 2 bytes.

Remarks: See ISO/IEC 7816-4.

15.1.70 Pointer Orientation
Purpose: Indicates the starting location for a Get File Record, and “next record”

pointer that must be returned.

Format: 1 byte (binary).

Content: ‘01’-‘03’, See Table 131

Remarks: Values other than ‘01’-‘03’ are reserved for future use

15.1.71 Message Code
Purpose: To identify a predefined text for display or printing.

Format: 1 byte (binary).

Content: See Table 177

Remarks: Used by the "Print Message" and Display commands.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

218

15.1.72 PIN Pad Identifier
Purpose: Unique PIN Pad identifier.

Format: 8 bytes (binary).

Content: IDPPCREATOR || IDPP.

15.1.73 PS
Purpose: A digital signature used to provide mutual authentication between a

PSAM and a PIN Pad, and to exchange the Initial Session Key (KSESINIT).

Format: Variable, binary

Content: Encrypted digital signature of the PSAM. See 7.2.4

15.1.74 PSAM Identifier
Purpose: Unique PSAM identifier.

Format: 13 bytes (binary).

Content: RIDPSAM || IDPSAMCREATOR || IDPSAM.

15.1.75 PSAM sub-address
Purpose: Identifies the Handler sub-address assigned to the PSAM.

Format: 1 byte (binary).

Content: The PSAM sub-address.

15.1.76 Record Data
Purpose: The data stored in a record in a file.

Format: LENREC bytes.

Content: Data contained in a record in a given file.

15.1.77 Record Pointer
Purpose: To identify a record in a file.

Format: 2 bytes (binary).

Content: 16-bit value, unsigned.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

219

Remarks A value of zeros (‘0000’) is not valid.
Once the record pointer has been assigned, it cannot be changed.

15.1.78 Record Tag
Purpose: Indicates the contents of a record read from the PIN Pad

Format: 1 byte.

Content: ‘85’

15.1.79 Response Code (RC)
Purpose: The Handler or Device uses the Response Code to indicate a problem

handling a Terminal Message command.

Format: 2 bytes (binary).

Content: See Table 176

15.1.80 Response Data
Purpose: Contains the data being returned in response to a card or PSAM

command.

Format: Variable

Content: The contents are specific to the command being responded to.

15.1.81 Returned String
Purpose: A string of data returned in response to a Read String message.

Format: Len bytes (binary).

15.1.82 RIDPSAM (Registered Identifier Of The Entity Assigning
PSAM Creator Ids)
Purpose: To make the identifier of a PSAM Creator unique.

Format: 5 bytes (binary).

Remarks: The identifier of the entity that assigns identifiers to certified PSAM
Creators (IDPSAMCREATOR), assigned as specified in ISO/IEC 7816-5.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

220

15.1.83 Search Type
Purpose: To allow the application to search for a particular type of event (for

example, card inserted), and/or an event that occurred at a specific
device (for example, the customer keypad).

Format: 1 byte (binary).

Contents See Table 179.

Table 179: Search Type Coding

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

x X x x x x RFU

 1 Search by Event Type

 1 Search by Event Location

15.1.84 Session Data
Purpose: To hold data necessary to initiate a communication session.

Format: Var.

Content: Any.

15.1.85 SK (Private Key)
Purpose: An asymmetric private key used by a PSAM for the purpose of

generating signatures and by a PIN Pad for the purpose of decryption.

Format: Variable length, binary

Remarks: The subscript identifies the entity to which the key belongs

15.1.86 Source Address (SAD)
Purpose: To identify the source of a given command or response.

Format: 2 bytes (binary).

Content: A handler address.

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

221

15.1.87 Status Words (SW1, SW2)
Purpose: To indicate the result of a command sent to an ICC.

Format: 2 bytes (binary).

Content: See ISO/IEC 7816-4.

Remarks: A value of ’96 01’ is used by the PSAM to indicate that additional
response data is available. The additional data is retrieved with a Get
Next command.

15.1.88 IDTHREAD (Thread Identifier)
Purpose: To identify a particular thread in a multi-threading terminal

Format: 1 byte (binary).

Content: The Thread Identifier can have any value in the range '00' - 'FF'.

Remarks: The MAD Handler assigns the Thread Identifier. A value may be re-used
when a thread is completed.

15.1.89 Time
Purpose: To specify a time-out value.

Format: 4 bytes (binary).

Content: The time-out value in milliseconds.

Remarks: Time indicates the maximum time after which either data or an error
response must be returned

15.1.90 Timer Flag
Purpose: To indicate that a time-out value is specified.

Format: 1 byte (binary).

Content: '00' - the message is not timed
'80' - the message is timed.

15.1.91 Track Data
Purpose: To hold track data from a magnetic stripe.

Format: Variable

Content: Depends on the track being read

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

222

15.1.92 Transaction Amount
Purpose: To indicate the transaction amount.

Format: 4 bytes (binary).

Content: The transaction amount is unsigned.

Remarks: The value represents the lowest denominator for the corresponding
Currency Code, e.g. for USD, amounts are represented in 1/100 USD
units, i.e. cents.

15.1.93 Transaction Results
Purpose: To indicate to the Merchant Application Handler the results of a

transaction, thus allowing the merchant equipment to dispense goods
or take other action as required.

Format: 1 byte (binary).

Content: '00' - the transaction was successful
'01' - the transaction failed.

15.1.94 u
Purpose: To identify the track(s) on the magnetic stripe to be read.

Format: 1 byte (binary).

Content: The ISO identifier of the track to be read.

Remarks: u can have the values '01', '02', '03', '0C', '0D', '17' and '7B' representing
track ISO 1, ISO 2, ISO 3, ISO 1&2, ISO 1&3, ISO 2&3 and ISO 1&2&3. The
highest bit is set if the track data to be returned are to be enciphered.

15.1.95 VKPCA, xx
Purpose: Indicates the version of the CA public key used to produced the PIN Pad

Creator or PSAM Creator certificate

Format: 1 byte (binary).

Remarks: The subscript indicates which CA key is referenced

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

223

16. Acronyms

Acronym or Data

Element

Description

AID Application Identifier

APDU Application Protocol Data Unit

ASW Application Status Words

ATR Answer-to-Reset

BCD Binary Coded Decimal

CA Certification Authority

CDP Cardholder Data Protection

CEPS Common Electronic Purse Specifications

CLA Class Byte of a Command APDU

DES Data Encryption Standard

DES3 Triple DES

DS Digital Signature

EMV Europay, MasterCard and Visa

ICC Integrated Circuit Card

IEC International Electrotechnical Commission

INS Instruction Byte of the Command Message

ISO International Organization for Standardization

KCV Key Check Value

Lc Length of Command Data Field

Le Expected Length of the Response Data Field

MAC Message Authentication Code

MAD Multi-Application Driver

MT Message Type

P1 Parameter1

P2 Parameter2

PED PIN Entry Device (PIN pad)

PIN Personal Identification Number

PK Public Key

PS Public-key digital signature

PSAM Purchase Secure Application Module

October 2013

TAPA Application Architecture Version 3.0

Copyright © 2013 Nets Denmark A/S
All rights reserved.

224

Acronym or Data

Element

Description

RC Response Code

RFU Reserved for Future Use

RIDPSAM Registered identifier of the entity assigning PSAM Creator IDs

RSA Rivest, Shamir and Adleman (Cryptographic Algorithm)

SCD Secure Cryptographic Device

SHA Secure Hash Algorithm

SK Private Key

SW1-SW2 Status Words

TAPA Terminal Architecture for PSAM Applications

TED Tamper Evident Device

var Variable

	Application Architecture Specification
	Version 3.0
	1. Revision Log
	2. Document Overview
	2.1 Purpose
	2.2 Intended Audience
	2.3 Included in this Document
	2.4 Not Included in this Document
	2.5 Reference Information
	2.5.1 Requirement Numbering
	2.5.2 References

	1. Terminal Architecture for PSAM Applications, Overview, version 2.0, April 2000.
	2. ISO/IEC 7816-3: 2006, “Identification cards - Integrated circuit cards with contacts - Part 3: Electrical interface and transmission protocols".
	3. ISO/IEC 7816-4: 2005, “Identification cards – Integrated circuit cards with contacts - Part 4: Organization, security and commands for interchange”.
	4. EMV Contactless Specifications for Payment Systems – V2.1, March 2011
	5. ISO/IEC 9797-1:2011 “Information technology - Security techniques - Message Authentication Codes (MACs) - Part 1: Mechanisms using a block cipher”
	6. EMV, version 4.3, November 2011 “Integrated Circuit Card Specification for Payment Systems” including later bulletins
	7. ISO/IEC 646: 1991, “Information technology - ISO 7-bit coded character set for information interchange“
	8. ISO 8859-15: 1999, “Information technology – 8-bit single-byte coded graphic character sets – Part 15: Latin alphabet No.9”
	9. ISO/IEC 7813: 2006, “Information technology – Identification Cards - Financial Transaction Cards”
	10. ISO/IEC 4909: 2006 “Identification cards – Financial transaction cards – Magnetic stripe data content for track 3”
	11. PCI SSC PTS, version 3.1, June 2011, “PIN Transaction Security”
	2.5.3 Command and Response Format Conventions
	2.5.4 Notational Conventions

	Hexadecimal Notation
	Binary Notation
	Document Word Usage
	Notation used in the PIN Pad Cryptography section
	2.6 Document Organization

	3. Architectural Overview
	3.1 Introduction
	3.2 General Requirements
	3.3 Terminal Application Architecture

	4. Functional Requirements
	4.1 The Router
	4.1.1 Functional Requirements
	4.1.1.1 The Router must validate the source and destination address and sub-address fields in messages received from an origination Handler to ensure they are defined in the specification and are also supported by the terminal application. This valid...
	4.1.1.2 The Router must not intervene or prevent routable messages from being delivered to a destination Handler.
	4.1.1.3 The Router should implement some error checking mechanism to ensure the data integrity of messages exchanged between handlers across physical interfaces. The mechanism implemented is left to the discretion of the terminal developer; however, ...

	4.1.2 Error Handling
	4.1.2.1 The Router must generate error messages if either the source or destination address is invalid.

	Table 1: Router Response Codes
	4.2 The Handlers
	4.2.1 Device Handlers
	4.2.2 Multi-Application Driver Handler
	4.2.3 Event Handler
	4.2.4 General Characteristics

	Table 2: Handler Address Assignments
	4.2.5 Functional Requirements
	4.2.5.1 A Handler that receives a command must always respond to the originator of that command (except as noted in Section 13.2.1).
	4.2.5.2 Prior to generating a response, a destination Handler must be permitted to issue commands to Handlers other than the originator of the initial command.
	4.2.5.3 A Handler must only respond to the originator of the command after all required subsequent dialogue has been completed with other Handlers.
	4.2.5.4 After sending a command, a Handler must not send another command to the same destination or for the same thread prior to receiving a response (except as noted in Section 13.2.1). (See section 5.5 for a discussion of multi-threading).
	4.2.5.5 When constructing a response, the responding Handler must use the source address and sub-address of the command message as the destination address and sub-address of the response. The Thread Identifier (IDthread) from the original command mess...
	4.2.5.6 A Handler should be limited to performing only those functions as needed to either directly support a particular device or manage a particular operation.
	4.2.5.7 When a Handler receives a command message from another terminal component, it must return a response to the requesting Handler.
	4.2.5.8 All Handlers must be able to receive and process messages with a message data length of at least 1024 bytes (Ldata (‘0200’). (Note: terminal applications must only rely on the ability to send longer messages in a proprietary environment).

	4.3 Message Handling

	Table 3: Terminal Message Format
	4.3.1 Time-out Management
	4.3.1.1 If the requested action cannot be performed, or the requested data is not available, then the recipient must respond with an error response.
	4.3.1.2 If a message includes a Timer Flag, and the requested action cannot be performed, the recipient must wait either until the action can be performed, or until the maximum time, as indicated (in milliseconds) in the Time field, has passed. If al...
	4.3.1.3 If either the Timer Flag is not set, or if the Time field contains a value of binary zeros, a response is required either when action is complete or when it is known that it cannot be completed.

	4.3.2 Exception Handling
	4.4 Handler-Independent Messages
	4.4.1 Get Handler Addresses
	4.4.1.1 The Get Handler command must conform to the format defined in Table 7.

	Table 7: Get Handler Addresses command
	4.4.1.2 The Get Handler Addresses response must conform to the format defined in Table 8

	Table 8: Response to Get Handler Addresses command
	4.4.1.3 The Response Codes applicable to the Get Handler Addresses command are listed in Table 9.

	Table 9: Response Codes to Get Handler Addresses command
	4.4.2 Open Handler
	4.4.2.1 All Handlers must be in the closed state before terminal start- up.
	4.4.2.2 The Open Handler command must conform to the format defined in Table 10.

	Table 10: Open Handler command
	4.4.2.3 The Open Handler response must conform to the format defined in Table 11.
	4.4.2.4 A response of “handler must be opened” must be returned if a Handler receives a terminal message prior to being opened.
	4.4.2.5 A response of “handler already opened” must be returned if a Handler receives the Open Handler command while already in open status.
	4.4.2.6 After successfully processing the Open Handler command, the handler must be capable of receiving and processing messages.

	Table 11: Response to Open Handler command
	4.4.2.7 The Response Codes applicable to the Open Handler command are defined in Table 12.

	Table 12: Response Codes to Open Handler command
	4.4.3 Close Handler
	4.4.3.1 The Close Handler command must conform to the format defined in Table 13.

	Table 13: Close Handler command
	4.4.3.2 The Close Handler response must conform to the format defined in Table 14.
	4.4.3.3 A response of “handler already closed” must be returned when a destination Handler receives a Close Handler command while already in closed status.
	4.4.3.4 A response of “Handler cannot be closed” must be returned when the physical device processing cannot be terminated. For example, the communication handler will return this response when the modem will not hang up.

	Table 14: Response to Close Handler command
	4.4.3.5 The Response Codes applicable to the Close Handler command are defined in Table 15.

	Table 15: Response Codes to Close Handler command
	4.4.4 Write Handler String
	4.4.4.1 The Write Handler String command must conform to the format defined in Table 16.
	4.4.4.2 If the destination address is for either a Display or a Printer device, the data string must be coded as indicated in the Code Table Index.
	4.4.4.3 PIN Pad requirement: If the Write Handler String command is sent to the User Interface Display Handler while the Secure Cryptographic Device (SCD) is in PIN Entry State, the command must include the Spmac. The SCD must authenticate the messag...
	4.4.4.4 SCD requirement: If the Data String in the Write Handler String command is enciphered, the SCD must decipher the Data String using the KSESDATA of the PSAM that initiated the command.
	4.4.4.5 All Display and Printer device Handlers must support the Common Character set defined in reference 6, EMV Book 4, Annex B.
	4.4.4.6 The Write Handler String response must conform to the format defined in Table 17.
	4.4.4.7 SCD requirement: If the Data String in the Write Handler String command is required to be enciphered, the SCD must encipher the Data String using the KSESDATA of the PSAM that initiated the command.
	4.4.4.8 If the Handler does not support this function, it must return a Response Code of Unsupported Operation.
	4.4.4.9 The Response Codes applicable to the Write Handler String command are listed in Table 18.

	4.4.5 Read Handler String
	4.4.5.1 The Read Handler String command must conform to the format defined in Table 19.
	4.4.5.2 The Read Handler String response must conform to the format defined in Table 20.
	4.4.5.3 If the responding Handler is a key-entry device, the Returned Data String must be coded using the character set specified in the Code Table Index. If the character set is not supported, the Handler must respond with the appropriate Response C...
	4.4.5.4 All key-entry device Handlers must support the Common Character set defined in reference 6, EMV Annex C.
	4.4.5.5 If the Handler does not support this function, it must return a Response Code of Unsupported Operation.
	4.4.5.6 The Response Codes applicable to the Read Handler String command are defined in Table 21.

	Note: The Response Codes defined in Table 21 are generic Response Codes and do not reflect handler-specific Response Codes (such as ‘No Connection for the communication handler’), nor proprietary Response Codes that may exist for specific operating e...
	4.4.6 Summary
	4.4.6.1 The common Handler commands are listed in Table 22. Any handler must support those with a Destination address marked “any”. The specified handlers must support those with specific addresses.

	5. The Multi-Application Driver Handler
	5.1 Application Selection
	5.2 Terminal Initialization
	5.2.1.1 The MAD-Handler must open any necessary Device Handlers through the issuance of multiple Open Handler commands. The MAD-Handler can determine the occupied sub-addresses, if any, by using the Get Handler Addresses command.
	5.2.1.2 All PSAMs must be reset by sending an ICC Power-On command to each occupied sub-address. In the response the MAD Handler receives the ATR and, if present, the Historical Bytes.
	5.2.1.3 The MAD Handler must issue the Start-up PSAM command to each application at each occupied PSAM sub-address.
	5.2.1.4 The MAD Handler must issue the Get Supported AIDs command to each application at each occupied PSAM sub-address.
	5.2.1.5 Prior to completing the configuration process, the MAD Handler may be required to send one or more application specific start-up commands to the PSAM. The format and content of these commands are outside the scope of this specification, and m...
	5.2.1.6 The terminal must successfully perform the initialization sequence prior to initiating any card transactions.

	5.3 Terminal Shutdown
	5.3.1.1 In order to ensure that the PSAM application is able to save all outstanding data, and be easily restarted, the terminal must send a PSAM Shut-down command to each PSAM application, and receive a response, prior to withdrawing power.

	5.4 Terminal Control
	5.5 Multi-Threading
	5.5.1.1 In order to support a multi-threading environment, the MAD Handler must assign a unique identifier (IDthread) to each currently active transaction, which must be used in all Terminal Messages relating to that transaction. The IDthread value m...

	5.6 Exception Handling

	Exception processing is specific to each TAPA application, i.e. IDPSAMAPP.
	6. The Card Handler
	The Card Handler is responsible for managing the interface to an integrated or peripheral card reading device. Currently defined card reading devices include the magnetic stripe reader, IC card reader, memory card reader and contactless card reader. E...
	6.1 Commands sent to the Magnetic Stripe Reader
	6.1.1 Read Magnetic Stripe

	The Read Magnetic Stripe command is used to read data from one or more ISO magnetic tracks. The command supports enciphered as well as clear text response.
	6.1.1.1 The Read Magnetic Stripe command must conform to the format defined in Table 23.

	The parameter track u is the hex value of the ISO identifier of the magnetic stripe track(s) to be read (as illustrated in Table 24). See reference 9, ISO/IEC 7813 for a description of the format of this data element. If the magnetic stripe track dat...
	For example:
	BYTES FROM CARD ==> BYTES DELIVERED TO APPLICATION
	STX ETX
	6.1.1.2 A response of “unsupported operation” must be returned if the reader does not support one or more of the requested tracks. If the requested tracks are supported by the reader, but are not present on the card swiped, then a response of “success...
	6.1.1.3 If an error occurs while reading one or more of the requested tracks, a Response Code of “transmission error” must be returned with the length field of the corresponding tracks in the returned message set to zero. In this case, the data of the...
	6.1.1.4 The Read Magnetic Stripe clear text response must conform to the format defined in Table 25.
	6.1.1.5 SCD requirement: The data of the track(s) must be enciphered using the KSESCDP of the PSAM that initiated the Read Magnetic Stripe command if the highest bit in u is set. The data shall be formatted as specified in Table 26.
	6.1.1.6 The Magnetic Stripe Reader must be capable of generating the Response Codes to the Read Magnetic Stripe command as defined in Table 27.
	6.1.2 Write Magnetic Stripe

	The Write Magnetic Stripe is an optional command used to write the entire track data to ISO track 3. (This command may be required by some proprietary applications).
	6.1.2.1 The Write Magnetic Stripe command must conform to the format defined in Table 28.
	6.1.2.2 Secure Cryptographic Device requirement: The data of the track must be deciphered using the KSEScdp of the PSAM that initiated the Read Magnetic Stripe command.

	For example:
	STX ETX
	6.1.2.3 The Write Magnetic Stripe response must conform to the format defined in Table 29.
	6.1.2.4 The Magnetic stripe Reader must be capable of generating the Response Codes to the Write Magnetic Stripe command as defined in Table 30.
	6.2 Commands sent to the Processor Card Reader

	Note that the Response Code contained in the response message only reflects whether the receiving handler was able to successfully process the ICC command, forward the C-APDU to the processor card, and receive a response. If a response is received fro...
	6.2.1 Message Handling

	Figure 5: Handler to Processor Card Interface
	6.2.1.1 If the interface to the Processor Card is T=0, the Get Response must be implemented as part of the Handler to deal with the requirements for case 2 and case 4 commands. (Please see reference 3, ISO/IEC 7816-4 and reference 6, EMV for further ...
	6.2.2 Enciphered Messages
	6.2.2.1 The Message Type must be used to show whether or not the command is partially (MT = ‘47’) and fully encrypted (MT = ‘48’) enciphered.
	6.2.2.2 The sub-handler address of the destination controls whether or not the response shall be encrypted. The setting of the most significant bit of the destination sub-handler address requests an enciphered response to be generated.

	6.2.3 ICC Command/Response

	The ICC command is used to send a command APDU to an IC card.
	6.2.3.1 An ICC command must conform to the format defined in Table 31.
	6.2.3.2 An ICC response must conform to the format defined in Table 32.
	6.2.3.3 SCD Requirement: The response data must be enciphered using the KSESCDP of the PSAM that initiated the ICC command.
	6.2.3.4 When constructing a response message to another Handler, the Processor Card Reader must use the source address and sub-address of the original request message as the destination address and sub-address of the response, set the Message Type to ...
	6.2.3.5 The Processor Card Reader must return the Response Code of “successful operation” if the Handler was able to deliver the C- APDU to the card successfully and receive a response.
	6.2.3.6 The Processor Card Reader must return the appropriate Response Code if it is unable to deliver the C-APDU to the IC card or does not get a response.
	6.2.3.7 The Response Codes applicable to the ICC command are defined in Table 33.
	6.2.4 ICC Power-On
	6.2.4.1 The ICC Power-On command must conform to the format defined in Table 34.
	6.2.4.2 The ICC Power-On response must conform to the format defined in Table 35.
	6.2.4.3 The Response Codes applicable to the ICC Power-On command are defined in Table 36.

	6.2.5 ICC Power-Off

	The ICC Power-Off command is used when a transaction involving an IC card has been completed. Use of this command may additionally result in the ejection of the IC card in terminals where this feature is warranted.
	6.2.5.1 The ICC Power-Off command must conform to the format defined in Table 37.
	6.2.5.2 The ICC Power-Off response must conform to the format defined in Table 38.
	6.2.5.3 The Response Codes applicable to the ICC Power-Off command are defined in Table 39.
	6.2.6 ICC Query

	The ICC Query command is issued to the Processor Card Reader in order to determine if a card is physically present in the IC reader.
	6.2.6.1 The ICC Query command must conform to the format defined in Table 40.
	6.2.6.2 The ICC Query response must conform to the format defined in Table 41.
	6.2.6.3 The Handler must return the appropriate Response Code if the ICC Query if no card is present.
	6.2.6.4 The Response Codes applicable to the ICC Query command are defined in Table 42.
	6.2.7 Verify Offline PIN
	6.2.7.1 The Verify Offline PIN enciphered command must conform to the format defined in Table 43.
	6.2.7.2 The Verify Offline PIN plaintext command must conform to the format defined in Table 44.
	6.2.7.3 The Verify Offline PIN plaintext response must conform to the format defined in Table 45.
	6.2.7.4 The Secure Cryptographic Device must verify the MACVOP in the command using the KSESmac, and decrypt the C-APDU using the KSESDATA.
	6.2.7.5 When constructing a response message to another Handler, the Processor Card Reader must use the source address and sub-address of the original request message as the destination address and sub-address of the response, set the Message Type to ...
	6.2.7.6 The Processor Card Reader must return the Response Code of “successful operation” if the Handler was able to deliver the C- APDU to the card successfully and receive a response.
	6.2.7.7 The Processor Card Reader must return the appropriate Response Code if it is unable to deliver the C-APDU to the IC card or does not get a response.
	6.2.7.8 In addition to the Response Codes defined for the ICC command (in Table 33), the Response Codes defined in Table 47 are applicable to the Verify Offline PIN Command.

	6.3 Commands sent to Memory Card Reader

	The interface to memory cards is proprietary and outside the scope of this specification. In addition to the common handler commands defined in Section 4.4, it is expected that the commands listed in Table 48 with a possible destination address of ‘02...
	6.4 Commands sent to the Contactless Card Reader

	The interface between the Contactless Card Reader and the ICC will use the protocol defined in Reference 4, EMV Contactless. The protocol is outside the scope of this specification.
	In addition to the common handler commands defined in Section 4.4, the commands listed in Table 48 with destination address of ‘0204’ will also be used for the contactless card reader.
	6.5 Summary

	7. The User Interface Handler
	The User Interface Handler is responsible for managing the interface to all user (customer) related equipment and peripherals, which may include the customer display, customer printer, PIN pad, and customer keypad.
	7.1 Messages sent to the User Interface Handler

	In addition to the common Handler commands provided in Section 4.4, the User Interface Handler must support the command set outlined in this section.
	7.1.1 Display Message
	7.1.1.1 The Display Message command must conform to the format defined in Table 49.
	7.1.1.2 PIN Pad requirement: If the Display Message command is sent to the User Interface Display Handler while the Secure Cryptographic Device (SCD) is in PIN Entry State, the command must include the Spmac. The SCD must authenticate the message usi...
	7.1.1.3 The receiving Handler must convert the 1-byte message code contained in the Display Message command into a predefined text as listed in Table 177. The terminal should use the defined message or the equivalent in the preferred language.

	Message Codes ‘01’ – ‘3F’ are defined in reference 6, EMV and are included in Table 177 only for completeness. In order to ensure compliance with EMV for use of that range, the terminal developer should reference the EMV specifications.
	7.1.1.4 The Display Message response must conform to the format defined in Table 50.
	7.1.1.5 The Response Codes applicable to the Display Message command are defined in Table 51
	7.1.2 Print Message
	7.1.2.1 The Print Message command must conform to the format defined in Table 52.
	7.1.2.2 The Print Message Code field must contain a 1-byte code as defined in Table 177, which the receiving Handler must interpret and convert to a predefined text message before being transferred to an attached printer.
	7.1.2.3 The Print Message response must conform to the format defined in Table 53.
	7.1.2.4 The Response Codes applicable to the Print Message command are defined in Table 54.

	7.1.3 Confirm Amount

	When the User Interface Handler receives this command, it must perform any necessary processing to display and confirm the transaction amount. The particular steps performed will be proprietary and environment dependent.
	7.1.3.1 The Confirm Amount command must conform to the format defined in Table 55.
	7.1.3.2 PIN Pad requirement: If the Confirm Amount command is sent to the User Interface Handler while the Secure Cryptographic Device (SCD) is in PIN Entry State, the command must include the Spmac. The SCD must authenticate the message using the KS...
	7.1.3.3 The Confirm Amount response must conform to the format defined in Table 56.
	7.1.3.4 PIN Pad requirement: If the Confirm Amount command is sent to the User Interface Handler while the Secure Cryptographic Device (SCD) is in PIN Entry State, the response must include the Spmac, R, generated by the SCD using the KSESmac of the P...
	7.1.3.5 The Response Codes applicable to the Confirm Amount command are defined in Table 57.
	7.1.4 Purge Print Buffer

	The Purge Print Buffer command is used to print and clear data that may be present in a print buffer.
	7.1.4.1 The Purge Print Buffer command must conform to the format defined in Table 58.
	7.1.4.2 The Purge Print Buffer response must conform to the format defined in Table 59.
	7.1.4.3 The Response Codes applicable to the Purge Print Buffer command are defined in Table 60.
	7.1.5 Get Amount

	The User Interface Handler may also be able to receive and process the Get Amount and Get Amount Enhanced messages, defined in sections 8.1.1 and 8.1.2.
	7.1.5.1 PIN Pad requirement: If a Get Amount command is sent to the User Interface Handler while the Secure Cryptographic Device (SCD) is in PIN Entry State, the command must include the Spmac. The SCD must authenticate the message using the KSESmac o...
	7.1.6 Funds Available

	The User Interface Handler may also be able to receive and process the Funds Available message, defined in section 8.1.4.
	7.2 PIN Pad Handler

	This section defines requirements for commands sent to the User Interface.
	All Secure Cryptographic Device's supporting PKC shall support the commands Get Key Check Value, Get Public Key Record and Verify PSAM Public Key Certificate (Submit Initial key).
	The terminal’s Secure Cryptographic Device - PIN Pad or separate Secure Cryptographic Device - needs to support these commands.
	7.2.1 Get Key Check Value
	7.2.1.1 The Get Key Check Value command must conform to the format defined in Table 61.
	7.2.1.2 The Secure Cryptographic Device/PIN Pad must verify that one of the public key version numbers (VKPca, pp) listed in the Get Key Check Value Command (to be used by the PSAM to verify the certificates) corresponds to the version number of the p...
	7.2.1.3 The Get Key Check Value response must conform to the format defined in Table 62.
	7.2.1.4 The Response Codes applicable to the Get Key Check Value command are defined in Table 63.
	7.2.1.5 To enable the synchronization process to continue if the Response code is 'FF80', the response to the Get Key Check Value command shall contain all data elements defined in Table 62.

	7.2.2 Get PIN Pad Public Key Record
	7.2.2.1 The Get PIN Pad Public Key Record command must conform to the format defined in Table 64.
	7.2.2.2 The Get PIN Pad public Key Record response must conform to the format defined in Table 65.
	7.2.2.3 The Response Codes applicable to the Get PIN Pad Public Key Record command are defined in Table 68.

	7.2.3 Verify PSAM Public Key Certificate
	7.2.3.1 The Verify PSAM Public Key Certificate command must conform to the format defined in Table 69.
	7.2.3.2 The Verify PSAM Public Key Certificate response must conform to the format defined in Table 70.
	7.2.3.3 The PIN Pad must return the appropriate Response Code if the Verify PSAM Public Key Certificate command has not been processed correctly.
	7.2.3.4 The Response Codes applicable to the Verify PSAM Public Key Certificate command are defined in Table 71.

	7.2.4 Submit Initial Key
	7.2.4.1 The Submit Initial Key command must conform to the format defined in Table 72.
	7.2.4.2 In order to generate the PS signature, the PSAM must perform the following steps.

	3. Split the digital signature into two components: a 96-byte DS1 and a remainder DSrem.
	4. Generate the DS2 by padding the DSrem with sufficient bytes of binary zeros to create a 96-byte string.
	7. The result (PS = PS1 || PS2) is sent to the PIN Pad in the Submit Initial Key command.
	7.2.4.3 The Submit Initial Key response must conform to the format defined in Table 73.
	7.2.4.4 In order to decrypt and verify the encrypted digital signature (PS) and recover the Initial Session Key (KSESinit), the PIN Pad must perform the following steps.

	7. If all the above checks are successful then KSESINIT is accepted and synchronization is complete.
	7.2.4.5 The Response Codes applicable to the Submit Initial Key command are defined in Table 74.
	7.2.5 Initiate PIN Entry
	7.2.5.1 The Initiate PIN Entry command must conform to the format defined in Table 77.
	7.2.5.2 The Initiate PIN Entry response must conform to the format defined in Table 78.
	7.2.5.3 Prior to generating or verifying the MACIPE in the Initiate PIN Entry command, the PSAM and the Secure Cryptographic Device must each derive a new set of PIN session keys from the previous set. A new Key Check Value (KCV) for the Transaction S...
	7.2.5.4 The Response Codes applicable to the Initiate PIN Entry command are defined in Table 81.

	7.2.6 Get PIN
	7.2.6.1 The Get PIN command must conform to the format defined in Table 82.
	7.2.6.1
	7.2.6.2
	7.2.6.3 The Get PIN response must conform with the format defined in Table 84.
	7.2.6.4 The PIN Pad must be capable of generating the Response Codes to the Get PIN command as defined in Table 85.
	7.2.6.5 The plaintext PIN block format to be enciphered must be formatted as shown in Figure 8 and as specified in reference 6, EMV (section 2.4.12).
	7.2.6.6 The Response Codes applicable to the Get PIN command are defined in Table 85.

	7.2.7 Terminate PIN Entry
	7.2.7.1 The Terminate PIN Entry command must conform to the format defined in Table 86.
	7.2.7.2 Table 87.
	7.2.7.3 The Response Codes applicable to the Terminate PIN Entry command are defined in Table 88.

	7.3 Summary

	8. The Merchant Application Handler
	8.1 Messages sent to the Merchant Application Handler

	This section provides a list of additional commands that should be accepted and processed by the Merchant Application Handler.
	The Get Amount commands consist of the basic Get Amount command and the Get Amount Enhanced command in which additional transaction specific data may be exchanged using the Discretionary Data field. The definition of the Discretionary Data may be diff...
	8.1.1 Get Amount
	8.1.1.1 The Get Amount command must conform to the format defined in Table 90.
	8.1.1.2 The Get Amount response must conform to the format defined in Table 91.
	8.1.1.3 If the currency code and exponent in the command were zeros, then the Merchant Application Handler must return the currency of the amount in the response.
	8.1.1.4 If the merchant application must display a message to the merchant or the user for amount entry, the Display Message Code indicates the message to be displayed.
	8.1.1.5 If the Merchant Application does not use a display to request an amount entry, and the command issued contained a Display Message Code, but the amount was still successfully entered, the Response Code ‘successfully processed’ must only be retu...
	8.1.1.6 If a display is used in the Get Amount process and the Merchant Application Handler does not recognize the Display Message Code, a Response Code ‘FF34’ must be returned. In this case the amount returned, if any, is not reliable.
	8.1.1.7 The Response Codes applicable to the Get Amount command are defined in Table 92.

	8.1.2 Get Amount Enhanced
	8.1.2.1 The Get Amount Enhanced command must conform to the format defined in Table 93.
	8.1.2.2 If the Destination Address is '0300', the MAC must be included.
	8.1.2.3 The requirements for the Get Amount command cover the Get Amount Enhanced command, too.
	8.1.2.4 The Get Amount Enhanced response must conform to the format defined in Table 94.
	8.1.2.5 The Response Codes applicable to the Get Amount Enhanced command are defined in Table 95.

	8.1.3 Transaction Completed

	The Transaction Completed command is issued to the Merchant Application Handler to inform it of the completion status of a specified transaction.
	8.1.3.1 The Transaction Completed command must conform to the format defined in Table 96.
	8.1.3.2 The Transaction Completed response must conform to the format defined in Table 97.
	8.1.3.3 The Response Codes applicable to the Transaction Completed command are defined in Table 98.
	8.1.4 Funds Available

	The Funds Available command may be used to inform the Merchant Application of the funds available to make a purchase.
	8.1.4.1 The Funds Available command must conform to the format defined in Table 99.
	8.1.4.2 The Funds Available response must conform to the format defined in Table 100.
	8.1.4.3 The Response Codes applicable to the Funds Available command are defined in Table 101.
	8.1.5 Display Message

	The Display handler must be able to receive and process the Display Message commands, which are defined in section 7.1.1.
	8.1.6 Print commands
	8.2 Summary

	9. The PSAM Handler
	 Provide generic (e.g. ISO/IEC DIS 7816-8) cryptography services.
	9.1 Message Handling

	2. The PSAM may be “multi-threaded”, handling several concurrent transactions (each with a different IDthread), each in a different state of completion.
	9.1.1 Messages sent to the PSAM Handler

	The next section describes how a Terminal Message which conveys an ICC command (Message Type = ‘42’), or a response from another device (Message Type = ‘FF’), is transformed to a Command APDU for the PSAM as defined in reference 3, ISO/IEC 7816-4.
	9.1.2 Messages sent to the PSAM

	Figure 9 illustrates the message translation that is performed by the PSAM Handler for commands sent to the PSAM.
	9.1.2.1 If present, the Lc must be coded on one byte. The Le must always be present and be coded on one byte with the value ‘00’.
	9.1.2.2 When the PSAM Handler receives an ICC command (Message Type ‘42’) it must forward the C-APDU contained within the message to the PSAM. The Source Address and IDTHREAD in the message must be retained in order to route correctly the subsequent r...
	9.1.2.3 When the PSAM Handler receives a response message (Message Type ‘FF’), it must construct a Response Command APDU as shown in Table 118 and send this command to the PSAM.
	9.1.2.4 If the LDATA field in a Response Message exceeds 248 bytes, the PSAM Handler must deliver the response in multiple response commands. In such a response command, the PSAM Handler must set the value of P2 equal to ‘01’. If P2 equals ‘01’, then ...
	9.1.2.5 The PSAM Handler must continue sending response commands with P2 = 01 until the remainder of the data to be sent does not exceed 248 bytes. The final response command of the series must use P2 = 00.
	9.1.2.6 If the PSAM Handler receives a command for a PSAM (Message Type ‘42’) and the C-APDU cannot be successfully forwarded to the PSAM, the PSAM Handler must reply to the originator of the command with the appropriate Response Code.
	9.1.3 Messages from the PSAM

	Figure 10: Message Translation for response from PSAM
	9.1.3.1 The PSAM must send all derived commands in the form of a Response APDU. The data portion must be in Terminal Message format, ready to be forwarded to the recipient. The source address must specify the sub-address assigned to the PSAM, the dest...
	9.1.3.2 The PSAM must send all response messages in the form of a Response APDU. The data portion must be in the Terminal Message format, but without the Response Code. The source address must specify the sub-address assigned to the PSAM, and the IDth...
	9.1.3.3 If the amount of data to send is greater than 252 bytes, the PSAM must deliver the data in multiple response APDUs. All but the last one have SW1SW1 = ‘9601’, indicating more data is to come. The last response APDU must have status bytes SW1SW...
	9.1.3.4 On receipt of an SW1SW2 = ‘9601’, the PSAM Handler must send a “Get Next” command, requesting further data. The Get Next command is detailed in Section 10.3.6.
	9.1.3.5 The PSAM Handler must concatenate the series of responses until all data is received or the Get Next command is rejected.
	9.1.3.6 When the PSAM Handler has received the complete response from the PSAM, the PSAM handler must forward the message to the assigned destination address.
	If the Message Type is different from ‘FF’, the PSAM Handler passes the message unaltered to the router.

	 the PSAM Handler must insert the two byte Response Code = ‘0000’.
	9.1.3.7 If the response from the PSAM does not contain a valid Terminal Message (that is, the associated Thread cannot be determined, and the destination is either not specified or cannot be derived) the PSAM Handler must not forward the message.

	10. PSAM Applications
	10.1 PSAM Initialization
	10.1.1.1 On reset, the PSAM will respond with the ATR, including the Historical Bytes, if any.
	10.1.1.2 In the response to the PSAM Startup command, the PSAM must include the PSAM Identification (RID + IDPSAMCREATOR + IDPSAM) and may include additional application specific data.
	10.1.1.3 The PSAM will respond to the Get Supported AIDs command with the list of AIDs supported by that application.

	10.2 PSAM Shut-down
	10.2.1.1 The PSAM must send a successful response, even if the particular PSAM implementation does not require any processing as a result of receiving this command.

	10.3 PSAM Commands and Responses

	This specification defines the use of commands with CLA byte ‘B0’. The INS ranges and their usage are defined in Table 105. Table 106 lists the application-independent commands that must be supported by the PSAM Manager.
	10.3.1 Message Formats

	 If an error was detected on transport layer, the PSAM may only respond with SW1SW2.
	10.3.2 Application Status Words

	Table 109 lists the Application Status Words that may be received from the PSAM application in a response to a command defined in this section.
	10.3.3 Start-up PSAM

	The Start-up PSAM command is issued by a MAD Handler application to exchange identification information about the PSAM application, and to allow the PSAM application to perform any necessary initialization
	10.3.3.1 The Start-up PSAM command must conform to the format defined in Table 110.
	10.3.3.2 The Start-up PSAM command response must conform to the format defined in Table 111.
	10.3.4 Get Supported AIDs

	The Get Supported AIDs command is issued by the MAD Handler to retrieve information about the supported AIDs for a specific PSAM application.
	10.3.4.1 The Get Supported AIDs command must conform to the format defined in Table 112.
	10.3.4.2 The Get Supported AIDs response must conform to the format defined in Table 113.
	10.3.5 PSAM Shutdown

	The PSAM Shutdown command is issued as an instruction to the PSAM application prior to withdrawing power from the PSAM.
	10.3.5.1 The PSAM Shutdown command must conform to the format defined in Table 114.
	10.3.5.2 The PSAM Shutdown response must conform to the format defined in Table 115.
	10.3.6 Get Next

	The Get Next command is issued by the PSAM Handler, after receiving a response from the PSAM with SW1SW2 = ‘9601’, in order to get the next incremental response from the PSAM.
	10.3.6.1 The Get Next command must conform to the format defined in Table 116.
	10.3.6.2 The Get Next response must conform to the format defined in Table 117.
	10.3.7 Response Command

	The PSAM Handler issues the Response command in order to send response data from another terminal device to the PSAM.
	10.3.7.1 The Response command must conform to the format defined in Table 118.
	10.3.7.2 If the P2 in the command is ‘01’, the PSAM must respond with an R-APDU consisting of only an SW1SW2 = ’90 00’. The PSAM Handler will then send another response command containing additional data to be concatenated to the data already received.

	When two or more response commands are “chained” as indicated by P2 = ‘01’, the PSAM must concatenate the data portion from each command, left to right, until the final command with P2 = ‘00’ is received. When all data have been received, the PSAM may...
	10.3.8 Synchronize PSAM - PIN Pad/Secure Cryptograhic Device

	The Synchronize PSAM/PIN Pad command is specific to the PIN Pad/Secure Cryptographic Device processing described in section 13.3, and is only used if the PSAM provides the application control. PSAM applications that do not support the PIN Pad/Secure C...
	10.3.8.1 The Synchronize PSAM/PIN Pad command must conform to the format defined in Table 119.
	10.3.8.2 The Synchronize PSAM/PIN Pad response must conform to the format defined in Table 120.
	10.3.8.3 The PSAM must return the appropriate Response Code if the Synchronize PSAM/PIN Pad command has not been processed correctly.

	11. The Data Store Handler
	11.1 General requirements
	11.2 Messages sent to the Data Store Handler

	This section provides a list of additional commands that should be accepted and processed by the Data Store Handler.
	11.2.1 File Management
	11.2.1.1 The Data Store Handler must provide file management services as requested by other terminal components (typically MAD-Handler and PSAM applications). Terminal components must be able to request the storage of both keyed and non-keyed records ...
	11.2.1.2 If a keyed file is created, then each record stored in that file must have a unique key.
	11.2.1.3 If a service is requested, it is fulfilled either entirely or not at all.

	11.2.2 Create File

	The Create File command is used to create one or more files within the terminal Data Store.
	11.2.2.1 The Create File command must conform to the format defined in Table 122.
	11.2.2.2 The Create File response must conform to the format defined in Table 123.
	11.2.2.3 If there is insufficient memory to successfully process the Create File command, the Data Store Handler must return a Response Code indicating “Insufficient resources”.
	11.2.2.4 The Response Codes applicable to the Create File command are defined in Table 124.
	11.2.3 Delete File

	The Delete File command is used to delete one or more files within the terminal Data Store. File deletion may be necessary to recover the memory they occupy and release the File Ids associated with them.
	11.2.3.1 The Delete File command must conform to the format defined in Table 125.
	11.2.3.2 The Delete File response must conform to the format defined in Table 126.
	11.2.3.3 The Response Codes applicable to the Delete File command are defined in Table 127.
	11.2.4 Add File Record

	The Add File Record command is used to add a record to an existing file within the terminal Data Store. Adding a record to a file means making an entry of the maximum file record + key size available.
	11.2.4.1 The Add File Record command must conform to the format defined in Table 128.
	11.2.4.2 The Data Store Handler must not reformat the file record data supplied in the DATA field.
	11.2.4.3 If LENrec = ‘0000’, the Data Store must reserve space for the maximum record size. However, the actual record length must be assigned as ‘0000’ until a subsequent Update is received with a defined size record.
	11.2.4.4 The Add File Record response must conform to the format defined in Table 129.
	11.2.4.5 If the Data Store Handler returns the Response Code of “successful operation”, the entire record must have been added to the file as requested.
	11.2.4.6 If there is insufficient memory to successfully process the Add File Record command, the Data Store Handler must return a Response Code indicating “Insufficient resources”.
	11.2.4.7 The Response Codes applicable to the Add File Record command are defined in Table 130.

	Note: the Data Store Handler may reject the Add File Record command for a keyed file if the search key already exists. It is up to the application adding the record to ensure uniqueness of the search key.
	11.2.5 Get File Record

	The Get File Record command is used to retrieve data based on the record pointer within a given file. This function is non-destructive. Note that '0000' is an invalid record pointer, which may be returned when there is no next or previous record. In t...
	11.2.5.1 The Get File Record command must conform to the format defined in Table 131.
	11.2.5.2 The Get File Record response must conform to the format defined in Table 132.
	11.2.5.3 The Response Codes applicable to the Get File Record command are defined in Table 133.
	11.2.6 Update File Record

	The Update File Record command is used to update an existing record with an amount of data that must not exceed the maximum indicated at file creation. The Update File Record command is destructive in that the previous content of the record is erased.
	11.2.6.1 The Update File Record command must conform to the format defined in Table 134.
	11.2.6.2 The Update File Record response must conform to the format defined in Table 135.
	11.2.6.3 If the Data Store Handler returns the Response Code of “successful operation”, the entire record, as specified in the Update command, must have been updated.
	11.2.6.4 If the Data Store Handler rejects the command, the addressed record must not have been modified.
	11.2.6.5 The Response Codes applicable to the Update File Record command are defined in Table 136.
	11.2.7 Find and Get File Record

	The Find and Get File Record command is used to locate and retrieve an existing record based on the associated key. This function is non-destructive to the file record.
	11.2.7.1 The Find and Get File Record command must conform to the format defined in Table 137.
	11.2.7.2 The Find and Get File Record response must conform to the format defined in Table 138.
	11.2.7.3 The Response Codes applicable to the Find and Get File Record command are defined in Table 139.
	11.2.8 Delete File Record

	The Delete File Record command is used to delete a record based on the record pointer for a given file. This function not only erases the data from the record but also frees the record space associate with it.
	11.2.8.1 The Delete File Record command must conform to the format defined in Table 140.
	11.2.8.2 The Delete File Record response must conform to the format defined in Table 141.
	11.2.8.3 The Response Codes applicable to the Delete File Record command are defined in Table 142.
	11.2.9 Find and Delete File Record

	The Find and Delete File Record command is used to locate and erase a record based on the search key from a given file. This function not only erases the data from the record but also frees the actual record space associated with it.
	11.2.9.1 The Find and Delete File Record command must conform to the format defined in Table 143.
	11.2.9.2 The Find and Delete File Record response must conform to the format defined in Table 144.
	11.2.9.3 The Response Codes applicable to the Find and Delete File Record command are defined in Table 145.
	11.2.10 Clear File

	The Clear File command is used to delete all records from a specified file. This function not only erases the data from the record but also frees the actual record space associated with it. However, the cleared file remains allocated to the previously...
	11.2.10.1 The Clear File command must conform to the format defined in Table 146.
	11.2.10.2 The Clear File response must conform to the format defined in Table 147.
	11.2.10.3 The Response Codes applicable to the Clear File command are defined in Table 148.
	11.3 Summary

	12. The Communication Handler
	12.1 Messages sent to the Communication Handler

	This section provides a list of additional commands that should be accepted and processed by the Communication Handler.
	12.1.1 Initiate Communication Session

	Following the session setup, data is exchanged using the Read Handler String and Write Handler String commands.
	12.1.1.1 The Initiate Communication command must conform to the format defined in Table 150. The coding of the Session Data field is proprietary to the terminal and outside the scope of this specification.
	12.1.1.2 The Initiate Communication Session response must conform to the format defined in Table 151.
	12.1.1.3 The Response Codes applicable to the Initiate Communication Session command are defined in Table 152.
	12.1.2 Terminate Communication Session

	The Terminate Communication Session command is used to discontinue a communication session with a host system.
	12.1.2.1 The Terminate Communication Session command must conform to the format defined in Table 153.
	12.1.2.2 The Terminate Communication Session response must conform to the format defined in Table 154.
	12.1.2.3 The Response Codes applicable to the Terminate Communication Session command are defined in Table 155.
	12.2 Summary

	13. Event Handler
	The Event Handler provides a mechanism for external events to be posted to the controlling application processes. Devices may post events to the Event queue by sending an Add Event Message to the Event Handler. Application processing code (either in t...
	13.1 Event Types

	The event type codes are defined in Table 157, with the addresses of the handlers where the events may have occurred.
	13.2 Event Handler Messages

	The Event Handler must be able to process the commands defined in this section.
	13.2.1 Add Event

	The Add Event message is used to post an event to the end of the event queue.
	13.2.1.1 An Add Event command must conform to the format defined in Table 158.
	13.2.1.2 The Add Event message may originate from a device handler that is not able to assign a valid Thread Identifier. To ensure that there is no collision with on-going threads being managed by the MAD-Handler, the Event Handler must not send a res...
	13.2.1.3 The Event Handler must retain the Event Type Code and Event Location in the Event Queue.
	13.2.2 Get Event

	The Get Event message is used to remove the oldest event from the event queue.
	13.2.2.1 A Get Event command must conform to the format defined in Table 159.
	13.2.2.2 A Get Event response must conform to the format defined in Table 160.
	13.2.2.3 The Event Handler must return the Response Code of “successful operation” if the Handler was able to successfully retrieve the oldest event from the event queue. The event must be removed from the queue as a result of a successful retrieval.
	13.2.2.4 The Event Handler must return the appropriate Response Code if it is unable to retrieve an event from the event queue. The event must not be removed from the queue if the retrieval was unsuccessful.
	13.2.2.5 The Response Codes applicable to the Get Event command are defined in Table 161.
	13.2.3 Find Event

	The Find Event message is used to find the first (or oldest) message of a particular type, or for a particular location, and remove it from the event queue.
	13.2.3.1 A Find Event command must conform to the format defined in Table 162.
	13.2.3.2 A Find Event response must conform to the format defined in Table 163.
	13.2.3.3 The Event Handler must return the Response Code of “successful operation” if the Handler was able to successfully find and retrieve an event from the queue. The event must be removed from the queue as a result of a successful retrieval.
	13.2.3.4 The Event Handler must return the appropriate Response Code if it is unable to find or retrieve an event from the event queue. No event must be removed from the queue if the retrieval was unsuccessful.
	13.2.3.5 The Response Codes applicable to the Find Event command are defined in Table 164.
	13.2.4 Flush Event Queue

	The Flush Event Queue is used remove all outstanding events from the event queue.
	13.2.4.1 A Flush Event Queue command must conform to the format defined in Table 165.
	13.2.4.2 A Flush Event Queue response must conform to the format defined Table 166.
	13.2.4.3 The Event Handler must return the Response Code of “successful operation” if the Handler was able to successfully flush all events from the queue.
	13.2.4.4 The Event Handler must return the appropriate Response Code if it is unable to empty the event queue. No event must be removed from the queue if the flush was unsuccessful.
	13.2.4.5 The Response Codes applicable to the Flush Event Queue command are defined in Table 167.
	13.3 Summary

	14. Secure Cryptographic Device Processing
	14.1 Overview
	14.2 PIN Pad processing

	 Multiple acquirers, responsible for different applications, may securely use the same PIN pad.
	14.2.1 Physical Environment
	14.2.1.1 The PIN Pad, with its keypad, must be contained within a Secure Cryptographic Device (SCD). The SCD may as well contain the Card Reader. The SCD must also contain User Interface Display. Each of these devices is addressed as specified in Tabl...
	14.2.1.2 The Card Reader shall if it is a stand-alone unit, be a Secure Cryptographic Device by itself. The Card Reader must transfer sensitive information to other devices in a secure way.

	14.2.2 Establishing the Secure Zone

	Figure 11: PIN Pad and PSAM Key Hierarchy
	14.2.3 Supported Configurations
	14.2.4 Implementation
	14.3 PIN Pad/PSAM Initialization
	14.3.1.1 The application must begin the synchronization process by sending the Get Key Check Value command to the PIN Pad. The response identifies the PIN Pad, and provides information about its current keys, including a check value (KCVpin) of the cu...
	14.3.1.2 The application must send the Get PIN Pad Public Key Record commands to the PIN Pad to retrieve the PIN Pad certificates. These certificates must be verified by the PSAM, and the PIN Pad’s public key recovered from them.
	14.3.1.3 The application must send PSAM certificates to the PIN Pad, using the Verify PSAM Public Key Certificate command. The PIN Pad must verify the PSAM’s certificates and recover the PSAM’s public key.
	14.3.1.4 The PSAM must generate an Initial Session Key, which must be sent to the PIN Pad by the application using the Submit Initial Key command. The Submit Initial Key command contains a public-key signature (PS), which must be generated by the PSA...
	14.3.1.5 If the application control is implemented in the PSAM, the MAD-Handler application must initiate the synchronization process by sending a Synchronize PIN Pad command to the PSAM application for each PIN Pad with which the PSAM must have a rel...

	14.4 PIN Processing
	14.4.1 Secure Cryptographic Device State
	14.4.1.1 The SCD must have two possible states: Default State and PIN Entry State.
	14.4.1.2 The SCD must be in Default State after terminal initialization.
	14.4.1.3 The SCD must be put into PIN Entry State after the PIN Pad has received and authenticated a valid Initiate PIN Entry command. The SCD must not transition to PIN Entry State under any other circumstances.
	14.4.1.4 The SCD must be returned to Default State when the PIN Pad receives a Terminate PIN Entry command. This command is not authenticated, and is not signed by the PSAM.
	14.4.1.5 When the SCD is in Default State:
	14.4.1.6 When the SCD is in PIN Entry State:

	 The Processor Card Reader may accept encrypted Card commands sent using the Verify Offline PIN Command message.
	14.4.2 PIN Entry
	14.4.2.1 The application must begin the process of PIN entry by sending The Initiate PIN Entry command to the PIN Pad. The PSAM must generate a new set of PIN Session Keys, and use the PIN MAC Session key (KSESmac) to sign the command.
	14.4.2.2 The application must send an authenticated Get PIN command to the PIN Pad in order to retrieve the PIN block. The PIN Pad will respond with the PIN Block encrypted under the current PIN Encryption Session Key (KSESpin). The PSAM must validate...
	14.4.2.3 During PIN entry, a symbol (for example, an asterisk character “*”) must be displayed at the user display instead of the PIN digit.
	14.4.2.4 Error handling procedures, e.g. deletion of incorrect entered PIN digits, must be handled internally by the Secure Cryptographic Device.

	14.5 PIN Verification

	3. Offline encrypted PIN verification, where the PIN sent to the card for verification encrypted under a key known to the card.
	14.5.1 Online PIN Verification

	If online PIN verification is to be performed, the application sends the PIN to the Acquirer encrypted in accordance with the method implemented by the Acquirer. This might for example use a PIN Encryption key established between the PSAM and Acquire...
	14.5.1.1 The application must retrieve the PIN encrypted under a key specified by the Acquirer. In order to accomplish this, the PSAM must decipher the PIN block using the PIN Encryption Session Key (KSESpin), and then re-encipher it as specified by t...
	14.5.2 Offline PIN Verification

	When offline PIN verification is to be performed, the application sends a command containing the PIN to the card. This command may contain a plaintext PIN, or may contain a PIN that has been encrypted under a key known to the card. (For example, the ...
	14.5.2.1 The PSAM must encrypt the PIN verification command APDU under the PIN session encryption key. The encrypted command must be sent to the Processor Card Reader using the Verify Offline PIN message. This message must be added a MAC using the PIN...

	The message is authenticated and the command APDU decrypted within the Secure Cryptographic Device. The C-APDU is then forwarded to the card.
	14.5.2.2 The response to the Verify Offline PIN message contains the card application’s response to the PIN verification command. The response message contains a MAC, which must be verified by the PSAM.

	Note that, as previously specified; offline PIN verification may only be performed while the SCD is in PIN Entry State.
	14.6 Security Requirements
	14.6.1 Business Entities
	14.6.1.1 The Primary Acquirer is the entity responsible for specifying, developing and maintaining the PIN Pads and (at least) one of the PSAMs (even if subcontracted to a third party). The Primary Acquirer may be the Certification Authority.
	14.6.1.2 The Certification Authority (CA) is responsible for certifying the Acquirers` PIN processing systems (including Host systems, PSAMs and PIN Pads).
	14.6.1.3 The certification of the Acquirer public keys must represent the approval by the CA of the Acquirer’s PSAM and Host-based PIN processors.
	14.6.1.4 The Card Schemes for which PIN processing is performed must approve the CA.
	14.6.1.5 If a Secondary Acquirer introduces a new application (and PSAM), which requires PIN entering, it is the responsibility of the CA to certify that the level of security provided by the Secondary Acquirer is sufficient.
	14.6.1.6 The Primary Acquirer may permit any number of (certified) Secondary Acquirer PSAMs to be installed in their terminal and thereby have access to the PIN Pad(s).
	14.6.1.7 The Primary Acquirer must know the identities of all the PSAMs in each of their terminals.
	14.6.1.8 The Primary Acquirer must know the identities of all the PIN Pads configured with each of their PSAMs.
	14.6.1.9 The IDppcreator and IDpp must uniquely identify the PIN Pad to the Acquirer. There is no requirement that the PIN Pad be globally identifiable.

	14.6.2 Physical Security Requirements
	The requirements for the physical security of a payment and PIN handing terminal are governed by the PCI SSC in ref. 11: e “PCI PIN Transaction Security, PTS”.
	Consequently, said requirements are out of scope for this specification.

	Figure 18: Secure Cryptographic Device
	14.6.3 Logical Security Requirements
	Also, the PCI SSC PTS requirements cover the logical security requirements.
	In addition to the PTS logical security requirements, a number of requirements related to this application architecture are defined below.
	14.6.3.1 The terminal and/or PSAM application must store the identities of each PSAM-PIN Pad configured pair. This must be available to the acquirer along with any other status information required by the acquirer.
	14.6.3.2 The PIN Pad private RSA key must remain protected within the confines of the tamper responsive PIN Pad. All cryptographic operations using this key must be performed within the tamper responsive PIN Pad.
	14.6.3.3 The PSAM private RSA key must remain protected within the PSAM. All cryptographic operations using this key must be performed within the PSAM.
	14.6.3.4 The set of PIN Session keys (including the KSES as well as the KSESpin and KSESmac, which are derived from it), must be protected within the Secure Cryptographic Device and PSAM. The Initial Session Key, exchanged during synchronization, may ...
	14.6.3.5 The set of PIN Session keys must only be used in the manner specified within this document; they must not be used for any other purposes.
	14.6.3.6 Only an authenticated Initiate PIN Entry command may cause the Secure Cryptographic Device to be put into PIN Entry state.
	14.6.3.7 When in PIN Entry State the Display may only show messages authenticated by the PSAM. Authenticated messages includes generic write string messages sent from the PSAM with a MAC, as well as messages referenced by “Message Codes”, which have b...
	14.6.3.8 When in PIN Entry State, any commands that require authentication must not be accepted by the Secure Cryptographic Device, i.e. the PIN pad if they do not contain a MAC from the PSAM that sent the Initiate PIN Entry command.

	14.6.4 Personalization Requirements
	14.6.4.1 After personalization and initial synchronization, the PIN Pad must contain the data elements defined in Table 169.
	14.6.4.2 After personalization and configuration the PSAM must contain the PIN related data elements defined in Table 170.
	14.6.4.3 The PIN Pad and PSAM must each be personalized with at least one key/certificate hierarchy chain and one CA public key. Depending on the acquirer’s requirements for the life span of the PIN Pad and PSAM and on the CA’s requirements for migrat...

	14.6.5 Minimum PSAM Requirements
	14.6.5.1 The following PIN Pad processing functions must be performed by the PSAM and not by the application within the terminal:

	 Encryption of any commands used for PIN verification being sent to the IC card.
	14.7 Cryptographic Requirements
	14.7.1 Verifying a Certificate - General Requirements
	14.7.1.1 Recovery of the certificate data must be performed using the process described in Annex F.2.1 of EMV 3.1.1.
	14.7.1.2 The recovery can only be performed if the length of the certificate is the same as the length of the modulus of the public key used in the verification. If the lengths are different, verification has failed.
	14.7.1.3 After recovering the recoverable certificate data, the header (first byte) and the trailer (last byte) must be checked. The header must be ‘6A’ (if there is an associated remainder field) or ‘4A’ (if there is no associated remainder field) an...
	14.7.1.4 If the public key algorithm indicator is not recognized then verification has failed.
	14.7.1.5 The hash value is a 20 byte field immediately preceding the trailer (last byte) of the recovered certificate data and must be verified according to the following procedure:
	14.7.1.6 The hash algorithm indicated in the certificate (SHA-1 is the only hash algorithm supported) must be applied to the concatenation, producing a 20-byte result. This result is compared to the hash value recovered from the certificate. If they a...

	14.7.2 Authentication of the PIN Pad Public Key
	14.7.2.1 The PSAM must verify that a version (VKPca, pp) of the CA public key used to create the PIN Pad Creator certificate (and so identified in the response to the Get Key Check Value command) matches a version number of a PKCA, PP in the PSAM. If...
	14.7.2.2 The PSAM issues Get PIN Pad public key record commands to obtain certificate records from the PIN Pad. The PSAM must verify the certificates in sequence:
	14.7.2.3 The general checks in Section 14.7.1 must be performed. If any of these fail then PIN Pad public key authentication has failed.
	14.7.2.4 The PSAM must also check that:

	If any these checks fail, then the PIN Pad public key has failed authentication.
	14.7.3 Authentication of the PSAM Public Key
	14.7.3.1 After receiving and validating the response to the Get Key Check Value command (with KCVs not identical), the PSAM must verify that a version of the CA public key (VKPCA,PSAM) in the response to the Get Key Check Value command matches a CA pu...
	14.7.3.2 The PSAM must send and the PIN Pad must verify certificates in sequence:
	14.7.3.3 The general checks in Section 14.7.1 must be performed. If any of these fail then PSAM public key authentication has failed.
	14.7.3.4 The PIN Pad must also check that

	If any these checks fail, then the PSAM public key has failed authentication.
	14.7.4 DES and Triple DES

	Note that for general encryption the padding and blocking process in Section 14.7.5 should be adhered to.
	14.7.5 Encryption and Decryption
	14.7.5.1 To encrypt any message, MSG, it must first be padded to the right with ‘80’ and then with as many ‘00’ bytes as necessary (possibly zero) until it is a multiple of 8 bytes:

	X : = MSG||'80'||'00'||…||'00';
	14.7.5.2 X is then divided into 8-byte blocks X1, X2, .., Xk and processed using Triple DES in Cipher Block Chaining mode:

	Yi = DES3(K1,K2)[Xi (Yi-1] for i = 1 to k
	14.7.5.3 The encrypted message is

	Note that this process always involves message padding so that when the message is an eight-byte PIN block the ciphertext will be 16-bytes long.
	14.7.5.4 In order to decrypt a ciphertext message the encryption processed is merely reversed as shown below.

	6. If all the preceding steps are successful then Dec(K1,K2)[Y] := MSG
	14.7.6 MAC computation

	The MAC computation is denoted by MAC(K1, K2)[D]. The computation conforms to ISO/IEC 9797-1:1999 Mechanism 3, using padding method 2 and DES as the block cipher. This is also described in EMV annex E1.2.
	14.7.6.1 Input D to the MAC is first padded to the right with ‘80’. The result is then padded to the right with enough bytes of ‘00’ (possibly none) to make the result a multiple of 8 bytes long.

	X: = MSG||'80'||'00'||…||'00';
	14.7.6.2 X is then divided into 8-byte blocks X1, X2, .., Xk and processed using Single DES in Cipher Block Chaining mode:

	Yi = DES(K1)[Xi (Yi-1] for i = 1 to k
	14.7.6.3 Finally the 8-byte MAC is computed as

	MAC(K1,K2)[D] := DES(K1)[DES-1(K2)[Yk]]
	14.7.7 RSA Operations
	14.7.7.1 All RSA operations must be performed as described in reference 6, EMV, annexes E and F.

	The RSA decipher function corresponds to the Sign function defined in reference 6, EMV, Annex F.
	14.7.8 RSA Padding
	14.7.8.1 The process of RSA padding of data D of length 96 bytes (768 bits) to a length L bytes (where L (113) is as defined below.

	PAD(D) := (|| (D (G(r)) || (r (SHA (D (G(r), 16))
	14.7.8.2 D is recovered from PAD(D) as follows:

	5. D is the rightmost 96 bytes of ((G(R)
	14.7.9 Certificate Formats
	14.7.9.1 The Acquirer Certificate must have the format defined in Table 171.
	14.7.9.2 The PSAM Certificate must have the format defined in Table 172.
	14.7.9.3 The PIN Pad Creator certificate must have the format defined in Table 173.
	14.7.9.4 The PSAM Certificate must have the format defined in Table 174.

	14.7.10 Expiration of Certificates
	14.7.10.1 A certificate ceases to be valid after its Certificate Expiration Date. Acquirers must ensure that CA public keys are no longer used after their expiry date as dictated by the CA.

	14.7.11 Replacement of Keys and Certificates
	14.7.11.1 It must not be possible to change the PSAM and PIN Pad private keys (and associated public key certificates) after personalization.

	Note that this may impact the minimum length of the PIN PAD Creator Public Key and the PIN Pad Public Key chosen.
	14.7.12 Revocation of Certificates

	The revocation of certificates is not described by this specification. If the acquirer’s implementation permits certificate replacement, then that process may be used to replace revoked certificates.
	14.7.13 Key Lengths
	14.7.13.1 The minimum and maximum length of the public key modulus (LPKM) must be according to Table 175.
	14.7.13.2 The key length (in bits) of the RSA moduli must always be an integer multiple of 16.

	14.8 PIN Pad-less Secure Cryptographic Device
	14.9 Response Codes
	14.10 Message Codes

	This section contains a list of Message codes that can be used to send pre-defined text messages to displays or to printers.
	15. Data Elements
	15.1.1 AIDN
	15.1.2 ALG
	15.1.3 ALGH
	15.1.4 Amount Confirmed Indicator
	15.1.5 Application Status Words (ASW1, ASW2)
	15.1.6 ATR (Answer To Reset)
	15.1.7 [C-APDU]
	15.1.8 Card Command
	15.1.9 Card Response
	15.1.10 CHALLENGE
	15.1.11 CLA (Class byte)
	15.1.12 CNTAID
	15.1.13 CNTSUBADDRESS
	15.1.14 Code Table Index
	15.1.15 CSN (Certificate Serial Number)
	15.1.16 CURR (Currency)
	15.1.17 CURRC (Currency Code)
	15.1.18 CURRE (Currency Exponent)
	15.1.19 Destination Address (DAD)
	15.1.20 DS (Digital Signature)
	15.1.21 DTHRPDA (Transaction date and time)
	15.1.22 Enc(KSESPIN)[PIN]
	15.1.23 Error Response Data
	15.1.24 Event Type Code
	15.1.25 Event Location
	15.1.26 File Identifier (IDFILE)
	15.1.27 Filler
	15.1.28 Format Code
	15.1.29 Handler Category Address
	15.1.30 Handler Sub-Address
	15.1.31 Historical Bytes
	15.1.32 IDPP (PIN Pad ID)
	15.1.33 IDPPCREATOR (Identifier for the Creator of a PIN Pad)
	15.1.34 IDPSAM (Identifier for a PSAM)
	15.1.35 IDPSAMAPP (TAPA PSAM Application Identifier)
	15.1.36 IDPSAMCREATOR (Identifier for the Creator of the PSAM)
	15.1.37 IDSCHEME (Acquirer reference number)
	15.1.38 INS (Instruction byte)
	15.1.39 KCV (Key Check Value)
	15.1.40 KEKCDP
	15.1.41 Key Data
	15.1.42 KEYCDP
	15.1.43 KSES
	15.1.44 KSESCDP
	15.1.45 KSESINIT
	15.1.46 KSESMAC
	15.1.47 KSESPIN
	15.1.48 Lc (Data length)
	15.1.49 Le (Expected data length)
	15.1.50 LDATA (Data field length)
	15.1.51 LEN
	15.1.52 LENAID,N
	15.1.53 LENREC
	15.1.54 LENSKEY
	15.1.55 Length
	15.1.56 LPKE (Length of a Public Key Exponent)
	15.1.57 LPKM (Length of Public Key Modulus)
	15.1.58 MAC
	15.1.59 Magnetic Stripe Data
	15.1.60 Message Code
	15.1.61 Message Data
	15.1.62 Message Type
	15.1.63 NUMFILE
	15.1.64 Pad Pattern
	15.1.65 PK (Public Key)
	15.1.66 PKC (Public Key Certificate)
	15.1.67 PKM (Public Key Modulus)
	15.1.68 PKR (Public Key Remainder)
	15.1.69 P1, P2 (Parameter bytes)
	15.1.70 Pointer Orientation
	15.1.71 Message Code
	15.1.72 PIN Pad Identifier
	15.1.73 PS
	15.1.74 PSAM Identifier
	15.1.75 PSAM sub-address
	15.1.76 Record Data
	15.1.77 Record Pointer
	15.1.78 Record Tag
	15.1.79 Response Code (RC)
	15.1.80 Response Data
	15.1.81 Returned String
	15.1.82 RIDPSAM (Registered Identifier Of The Entity Assigning PSAM Creator Ids)
	15.1.83 Search Type
	15.1.84 Session Data
	15.1.85 SK (Private Key)
	15.1.86 Source Address (SAD)
	15.1.87 Status Words (SW1, SW2)
	15.1.88 IDTHREAD (Thread Identifier)
	15.1.89 Time
	15.1.90 Timer Flag
	15.1.91 Track Data
	15.1.92 Transaction Amount
	15.1.93 Transaction Results
	15.1.94 u
	15.1.95 VKPCA, xx

	16. Acronyms

