nets.:

Nets Branch Norway
Haavard Martinsens Vei 54
NO-0045 Oslo

T +47 22 89 89 89
www.nets.eu

Foretaksregisteret NO 996 345 734

E-Signing Java Client API
Implementation guide

Version: 1.7
Date: 13.11.2018

p.1-16

Contents
1. INErodUCTHIiON ... e 3
PUIPOSE .. e 3
Intended audieNCe oo s 3
Referenced documentation..........ocooiiiiiiiiiiii i 3
Terms and definitioNs ... e 3
o1 o] 1 1Y/ 1 0 3
Change 100 ... e 4
2. OVEIVIBW ..t 5
E-signing Client apiooviiiiiii e 5
CoNfIQUIAtION ...t 5
3. ESigNClieNntapi oo e 8
DEPENAENCIES ... et 8
LI L €SI (= 1 S 8
MerchantCoNteXt ...t 8
ESIgNINGFaCTOrY ... e 10
ESIgniNgFacadeccoiiiiiiiiiii s 10
EXample COOe ... e 14
EFrOrCOOES ...t e 15

1. Introduction

Purpose

Intended audience

Referenced
documentation

Terms and
definitions

Acronym

nets

This document describes the E-Signing Java Client API.

Intended audience is developers and architects implementing the E-Signing
service.

Document

Description

TrustSignMessage
XML Interface Specifi-
cation

E-Signing messages describing the
communication protocol for accessing E-
Signing

TrustSignMessage-
<version>.xsd

E-Signing XML Schema defining the supported
XML message structures.

Nets TrustSign Inte-
gration Guide

This document gives an overview of the inte-
gration process, configuration data, infor-
mation about elD providers and more.

Term

Description

Signing order

XML request to E-Signing Service defining doc-
uments to sign by people holding a digital ID.
The term is used as an abstraction of a signing
workflow where multiple persons is supposed
to sign various documents.

Acronym Description

API Application programming interface

DNS Domain Name System

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JKS Java Key Store

RMS E-Signing Service Request Management Sys-
tem

SDO Signed Data Object

SEID Samarbeid om Elektronisk ID

SSL Secure Socket Layer

PKCS#12 Public Key Cryptography Standard 12 defines a
keystore standard (short: P12)

XML Extensible Markup Language

Change log

nets.:

Version Description Date

1.0 First official version 14.03.2013
11 Added truststore creation descrip- 20.06.2013

tion

1.2 Updated trust store description 15.12.2015
1.3 Updated hostnames 31.03.2016
1.4 Updated with new request types 25.10.2016
1.5 Updated with new request type 25.11.2016

nets.:

2. Overview

E-signing client api The E-Signing service may be called with various messages. A message is
an XML request and has a corresponding XML response. The request and
response XML protocol is defined in the TrustSignMessage-<version>.xsd.

The E-Signing service messages vary from small XML structures to very
large constructs. Implementing the complete interface may take some
time. To reduce our customers’ implementation time we offer the esigncli-
entapi. The esignclientapi-<version>.jar implements the complete
TrustSignMessage XML interface. The library offers the following functional-
ity:

1. The library exposes Java objects that represent each message in
the TrustSignMessage interface (InsertOrder, CancelOrder etc).

2. The library offers a Facade class which again has different methods
(one for each type of message) for each TrustSignMessage type.

3. Validation of the request according to the latest TrustSignMessage
XML schema

4. Signing of the requests creating enveloping XML Digital Signatures.
All requests to the E-Signing service MUST be signed.

5. Validation of the response according to the TrustSignMessage XML
schema

6. Error handling and interpretation of errorcodes from both RMS and
TrustSignMessage.

7. Multi merchant configuration. The client system may initialize the
library setting up many Merchant Contexts. Each Merchant Context
must be unique and mapped to a unique merchant name and
should have a unique MerchantID (provided by Nets). Please read
the “TrustSignMessage XML Interface Specification” and the
“TrustSign integration guide” for more information.

8. Communication between the client application and the remote E-
Signing service. Configuration of client SSL keystore, SSL trust
store and proxy settings if also supported. Se the upcoming chap-
ters for more details and example code.

Configuration A E-Signing customer, also referred to as “merchant”, is provided with the
following configuration items for secure communication with the E-Signing
service:

- A keystore, PKCS#12, for signing XML requests

- A keystore. PKCS#12, for secure 2-way-SSL communication (client
SSL keystore)

- A MerchantlD, a customer number provided by Nets. The digital
certificates located in the keystores along with the MerchantID
uniquely identify the customer in the E-Signing service system.

Truststore In addition you need a truststore that contains the SSL-certificate for es-
tablishing an SSL-connection to the E-Signing server. You can create this

nets.:

file by downloading the certificate or the issuer to a local certificate-file by
entering the address https://www.sign.nets.eu/ in a Chrome browser and
clicking the locker-sign in the address field:

[Forbidden x

¢« — C |B NETS NORWAY AS [NO] | https://www.tsos.bbs.no

T Apper *J

NETS NORWAY AS ! |_
. Tilkoblingen til dette nettstedet er privat.
Forbic

Tillatelzer | Tilkobling
Your client 1

Identiteten til NETS NORWAY AS pa OSLO, OSLO,
MO er verifisert av Symantec Class 3 EV 55L CA -
G3. Gyldig informasjon om sertifikatapenhet ble
mottatt fra tjeneren.

Sertifikatinformasjon

You may then open the issuer certificate using the “Certificate information”
button:

[Certificate (25w

| General |; Details | Certification Path

-

Shiow: [«:MI:» v]
Field Value it
B'u'ersiun V3 =
BSeriaI number le 1c8e 52 0e ba ee 99 3 Te...
BSignat.lre algorithm sha256R5A
DSignat.lre hash algarithm sha256
= tssuer Symantec Class 3 EV SSL CA - ...
[=|valid from 5. mars 2015 01:00:00
B'u'alid to 13, mars 2017 00:59:59
I-—'l'ﬁ hisrt wiana_tene hhe nn eSemirity S

Edit Properties... Copy to File...

Learn more about certificate details

Lo |

Then, click on the Details-tab and select “Copy to File”. Follow the wizard
instructions in order to save the certificate to a Base-64 encoded file.

nets.:

Then, from the command-line, execute the following keytool-command:

C:> keytool -import -alias nets.es -file <cert-file> -keystore
<your-truststore>

Where the alias is your description of the certificate, cert-file is the file you
just stored the certificate in and your-truststore is a filename for the
truststore you want to create. Answer “yes” to the question if you want to
trust the certificate and choose a password for the truststore-file.

Now you have a truststore and a password that can be entered in the pro-
gram-code to establish communications to the E-signing server.

Note that if you are using this document only as a form of a reference,
without using the API, you may also select to trust the certificate directly
as an X.509 certificate file. There are many other ways of doing this, like
trusting the issuer or root certificate instead of the site certificate. The
main goal is to ensure that you connect to a trusted site.

nets.:

3. Esignclientapi

Dependencies The esigningclientapi is a jar with dependencies. The following list outlines
these dependencies:

- esigningclientapi-<version>_jar
- tsmxmlapi-<version>.jar

- commons-httpclient-3.1.jar

- commons-logging-1.0.4_jar

- commons-codec-1.2.jar

- bcmail-jdk16-1.40.jar

- bcprov-jdk16-1.40.jar

Alternatively you may use the esignclientapi-<version>-jar-with-
dependencies. jar which is a bundle holding all the needed binaries.

{ A [

CUSTOMER SITE
| €& nets

? INTERNET

by il
e SN

E-SIGNING SERVICE

APPLICATION SERVER HTTR/HTTPS PROXY
\,
g "

Three steps To start using the esigningclientapi include the esigningclientapi-
<version>.jar along with its jar-dependencies into your project. Follow
these three simple steps:

1. Construct a MerchantContext instance

2. Register the MerchantContext in the ESigningFactory

3. Obtain a ESigningFacade from the ESigningFactory. The
ESigningFacade is the abstraction of the ESigningService inter-
face.

MerchantContext The esigningclientapi may serve multiple merchants with different creden-
tials. Each merchant must have its own signing keys and MerchantlD, each
merchant must have its own context.

The MerchantContext object holds one merchant configuration. The cus-
tomer application must setup a MerchantContext by calling the following
setter methods on the MerchantContext object:

- setSslKeystorePath: Fully qualified filesystem path to SSL
PKCS#12 keystore

- setSslKeystorePwd: The password to the SSL keystore

- setSigningKeystorePath: Fully qualified filesystem path to sign-
ing PKCS#12 keystore

nets

- setSigningKeystorePwd: The password to the signing keystore

- setTruststorePath: Fully qualified filesystem path to SSL
truststore. This is also a keystore and must hold the trusted SSL
certificates. This keystore might be a JKS (Java KeyStore) or a
PKCS#12 and must hold the issuer certificate of the E-Signing ser-
vice Server SSL certificate.

- setTruststorePwd: The password to the SSL truststore

- setTruststoreType: Must be either KeyStoreType.JKS or KeySto-
reType.PKCS12.

- setCommTimeout: Sets the socket timeout in milliseconds

- setEnv: Sets the target E-Signhing service environment. Should be
either Environment.PRE_PRODUCTION or Environment.PRODUCTION.
The URLs to the different Environments are built into the API.

- setHttpProxyHost: If you have a http proxy, as shown in the fig-
ure above, then the host IP or DNS name must be set

- setHttpProxyPort: If a proxy host is set then setting the proxy
port is mandatory

- setHttpProxyUsername: If HTTP proxy exists and requires basic
authentication

- setHttpProxyPassword: If setHttpProxyUsername is called then
the password must also be provided.

- setMerchantld: This is the unique merchant/customer number
provided by Nets

- setMerchantName: The merchant name must be set and the value
can be any String. The merchant name is there for you to label the
merchant context with a human readable tag.

import no.bbs._trust_esignclientapi.impl_MerchantContext

MerchantContext merchantContext = new MerchantContext();

merchantContext.setSslKeystorePath(*'/cfg/sslkeystore.pl2™);
merchantContext.setSslKeystorePwd(*'pwd™) ;
merchantContext.setSigningKeystorePath(**/cfg/sign.pl2”);
merchantContext.setSigningKeystorePwd('pwd™);
merchantContext.setTruststorePath(*'/cfg/truststore™);
merchantContext.setTruststorePwd(*'changeit™);
merchantContext.setTruststoreType(KeyStoreType.JKS);
merchantContext.setCommTimeout(5000) ;
merchantContext.setEnv(Environment.PRE_PRODUCTION) ;
merchantContext.setHttpProxyHost("'proxy');
merchantContext.setHttpProxyPort(**'8080") ;
merchantContext.setHttpProxyUsername(''proxyuser");
merchantContext.setHttpProxyPassword(*'pwd™) ;
merchantContext.setMerchantld(*'1001");

merchantContext.setMerchantName(*'acme');

nets.:

ESigningFactory
ESigningFactory is a MerchantContext registry. ESigningFactory ex-

poses two methods:

1. registerMerchantContext(MerchantContext ctx)
This method validates the input MerchantContext to ensure that
the provided merchant configuration is correct. The input Mer-
chantContext is registered under the merchant name. If you reg-
ister two MerchantContexts with the same MerchantName
then the last one registered will overwrite the existing one.

2. getESigningFacade(String merchantName)
This method returns a ESigningFacade instance loaded with the
MerchantContext holding the input merchantName.

import no.bbs.trust.esignclientapi.impl._ESigningFactory
import no.bbs.trust.esignclientapi.impl.ESigningFacade

ESigningFactory fac = ESigningFactory. INSTANCE;
fac.registerMerchantContext(merchantContext) ;

ESigningFacade facade = fac.getESigningFacade(merchantname);

ESigningFacade
The ESigningFacade class is obtained from the ESigningFactory and is the
abtraction of the E-Signing service interface. ESigningFacade exposes the
following methods:

- InsertOrderResponse insertOrder(InsertOrderRequest req)

Method to insert a Signing order request. This method validates

the input request object, signs the XML representation of the ob-
ject, communicates with the E-Signing Service and returns a re-
sponse object. If an error occurs then an ESignClientException is
thrown holding the error code and error texts.

- CancelOrderResponse cancelOrder(CancelOrderRequest req)

Method to cancel an already existing order. This method validates
the input request object, signs the XML representation of the ob-
ject, communicates with the E-Signing Service and returns a re-
sponse object. If an error occurs then an ESignClientException is
thrown holding the error code and error texts.

- GetDocumentsResponse getDocuments(GetDocumentsRequest r)
Method to retrieve Signing order documents and the status of each
document. This method validates the input request object, signs

the XML representation of the object, communicates with the E-

10 - 16

nets.:

Signing Service and returns a response object. If an error occurs
then an ESignClientException is thrown holding the error code and
error texts.

GetNotificationLogResponse getNotification-
Log(GetNotificationLogRequest request)

Method to retrieve an existing signingorder’s notification log. This
method validates the input request object, signs the XML represen-
tation of the object, communicates with the E-Signing Service and
returns a response object. If an error occurs then an ESignClien-
tException is thrown holding the error code and error texts.

GetOrderResponse getOrder(GetOrderRequest request)

Method to retrieve an existing order as it was registered. This
method validates the input request object, signs the XML represen-
tation of the object, communicates with the E-Signing Service and
returns a response object. If an error occurs then an ESignClien-
tException is thrown holding the error code and error texts.

GetOrderDetai lsResponse getOrderDe-
tails(GetOrderDetai lsRequest request)

Method to retrieve various details about an existing order. This
method validates the input request object, signs the XML represen-
tation of the object, communicates with the E-Signing Service and
returns a response object. If an error occurs then an ESignClien-
tException is thrown holding the error code and error texts.

GetOrdersResponse getOrders(GetOrdersRequest request)

Method to obtain OrderIDs based on various filters. OrderIDs and
statuses are returned. This method validates the input request ob-
ject, signs the XML representation of the object, communicates
with the E-Signing Service and returns a response object. If an er-
ror occurs then an ESignClientException is thrown holding the error
code and error texts.

GetOrderStatusResponse getOrder-
Status(GetOrderStatusRequest request)

Method to retrieve all statuses of an order. OrderStatus, Docu-
mentStatuses, SignerStatuses etc. This method validates the input
request object, signs the XML representation of the object, com-
municates with the E-Signing Service and returns a response ob-
ject. If an error occurs then an ESignClientException is thrown
holding the error code and error texts.

GetSDOResponse getSDO(GetSDORequest request)

Method to fetch the SDO (Signed Data Object) for a given Orderld.
If the order is not Complete then the SDO is not returned. This
method validates the input request object, signs the XML represen-
tation of the object, communicates with the E-Signing Service and
returns a response object. If an error occurs then an ESignClien-
tException is thrown holding the error code and error texts.

11 -16

nets.:

GetSDODetai IsResponse getSDODetai Is(GetSDODetai lsRequest
request)

Method to validate and parse a SDO. This method validates the in-
put request object, signs the XML representation of the object,
communicates with the E-Signing Service and returns a response
object. If an error occurs then an ESignClientException is thrown
holding the error code and error texts.

GetSigningProcessesResponse getSigningProcess-
es(GetSigningProcessesRequest request)

Method to get details about a given order’s signing processes. Sta-
tuses and signing URLs are provided. This method validates the in-
put request object, signs the XML representation of the object,
communicates with the E-Signing Service and returns a response
object. If an error occurs then an ESignClientException is thrown
holding the error code and error texts.

MergeSDOsResponse mergeSDOs(MergeSDOsRequest request)

Method to merge two SDOs. Both SDOs MUST hold the same doc-
ument. This is a service to merge two SDO contructs where each
SDO has different signatures but over the same document. The
signatures are merged into one SDO and the SDO is re-sealed
leaving it untouchable. This method validates the input request ob-
ject, signs the XML representation of the object, communicates
with the E-Signing Service and returns a response object. If an er-
ror occurs then an ESignClientException is thrown holding the error
code and error texts.

ModifyOrderDeadl ineResponse modifyOrderDead-
line(ModifyOrderDeadl ineRequest request)

Method to shift ALL deadlines in a signingorder with the provided
ShiftValue in hours. This method validates the input request object,
signs the XML representation of the object, communicates with the
E-Signing Service and returns a response object. If an error occurs
then an ESignClientException is thrown holding the error code and
error texts.

ModifySigningProcessResponse modifySigningPro-
cess(ModifySigningProcessRequest request)

Method to set a signingorder status to “RejectedBySigner”. This
method validates the input request object, signs the XML represen-
tation of the object, communicates with the E-Signing Service and
returns a response object. If an error occurs then an ESignClien-
tException is thrown holding the error code and error texts.

ValidateSDOResponse validateSDO(ValidateSDORequest req)

Method to validate a SDO. This method validates the input request
object, signs the XML representation of the object, communicates
with the E-Signing Service and returns a response object. If an er-
ror occurs then an ESignClientException is thrown holding the error
code and error texts.

12 -16

nets.:

GetPAdESResponse getPAdES(GetPAdESRequest req)

Method to get the PAdES signed PDF document from input orderID
after an order is completed. This method validates the input re-
quest object, signs the XML representation of the object, communi-
cates with the E-Signing service and returns a response object. If
an error occurs then an ESignClientException is thrown holding the
error code and error texts.

GeneratePAdESResponse generatePAdES(GeneratePAdESRequest
req)

Method to generate PAJES signed PDF document from the input
SDO object. This method validates the input request object, signs
the XML representation of the object, communicates with the E-
Signing service and returns a response object. If an error occurs
then an ESignClientException is thrown holding the error code and
error texts.

DeleteDocumentDataResponse deleteDocument-
Data(DeleteDocumentDataRequest req)

Method to delete document data and SDO from the E-Signing da-
tabase. This method validates the input request object, signs the
XML representation of the object, communicates with the E-Signing
service and returns a response object. If an error occurs then an
ESignClientException is thrown holding the error code and error
texts.

ModifySignerResponse modifySigner(ModifySignerRequest
req)

Method to alter the signer data such as name and signerid on an
existing order that signing has not yet been started upon. This
method validates the input request object, signs the XML represen-
tation of the object, communicates with the E-Signing Service and
returns a response object. If an error occurs then an ESignClien-
tException is thrown holding the error code and error texts.

FinalizeOrderResponse finalizeOrder(FinalizeOrderRequest
req)

Method to set an order with at least one signature to complete sta-
tus. This method validates the input request object, signs the XML
representation of the object, communicates with the E-Signing ser-
vice and returns a response object. If an error occurs then an
ESignClientException is thrown holding the error code and error
texts.

GetSignatureResponse getSignature(GetSignatureRequest
req)

Method to retrieve signature for a signing along with OCSP and
SSN if it is available. This method validates the input request ob-
ject, signs the XML representation of the object, communicates

13-16

nets.:

with the E-Signing service and returns a response object. If an er-
ror occurs then an ESignClientException is thrown holding the error
code and error texts.

Example code
Below is an example of how to insert a Signing order. Creating a register-
ing MerchantContexts was shown in the previous chapters.

ESigningFacade facade = ESigningFactory.INSTANCE.getESigningFacade(merch);

InsertOrderRequest request = new InsertOrderRequest();
request.setMerchantID(1001);
request.setMessageID("esignclientapi-test-1");
request.setTime(new Date());
request.setOrderID("1001-12345");
request.setAdditionalInfo(“Additional info”); //Optional

String doctosign = new String("Purchased for 500 NOK. Item #34.");
Text txt = new Text();

txt.setB64DocumentBytesAsString(new
String(Base64.encode(doctosign.getBytes("UTF-8"))));

Doc doc = new Doc();
doc.setDocType(txt);

doc.setDesc("ACME Purchase order 5434");
doc.setLocalDocRef("#34");
doc.setTitle("ACME purchase order");
doc.setRequiresAuthentication(false);

// Add Docs to sign

ArraylList<Doc> documents = new ArraylList<Doc>();
documents.add(doc);
request.setDocuments(documents);

// Add Signers with preset accepted PKIs (BankID)
BankID bankid = new BankID();

SignerID signerId = new SignerID();
signerId.setIdType("SSN");
signerId.setIdValue("01017000000");
bankid.setSignerID(signerId);

ArraylList<IPKI> acceptedPKIs = new ArrayList<IPKI>();
acceptedPKIs.add(bankid);

Signer signer = new Signer();
signer.setlLocalSignerRef("01017000000") ;
signer.setName("0la Nordmann");
signer.setAcceptedPKIs(acceptedPKIs);
ArraylList<Signer> signers = new ArrayList<Signer>();
signers.add(signer);

request.setSigners(signers);

// ExecutionDetails

ExecutionDetails executionDetails = new ExecutionDetails();
executionDetails.setOrderDeadline(new Date(System.currentTimeMillis() +
86400000)) ;
executionDetails.setDisplayProcessInfo("NameStatusTime");
Step stepl = new Step();

stepl.setStepNumber(1);

SigningProcess signingProcess = new SigningProcess();
signingProcess.setLocalDocumentReferance("#34");
signingProcess.setlLocalSignerReferance("01017000000");
stepl.addSigningProcess(signingProcess);
executionDetails.addStep(stepl);
request.setExecutionDetails(executionDetails);

InsertOrderResponse response = facade.insertOrder(request);

14 - 16

nets.:

ErrorCodes
The following table descibes the errorcodes from the esignclientapi. The
errorcodes from the E-Signing service is located in the TrustSignMessage
Interface Specification.

ErrorCode Description

1000 ESigningFactory failed to register
MerchantContext. Reason: (%01)

1001 ESigningFactory failed to get
ESigningFacade. Reason: (%1)

2000 ESigningFacade.insertOrder failed.
Reason: (%1)

2001 ESigningFacade.cancelOrder failed.
Reason: (%1)

2002 ESigningFacade.getDocuments
failed. Reason: (%1)

2003 ESigningFacade.getNotificationLog
failed. Reason: (%1)

2004 ESigningFacade.getOrder failed.
Reason: (%1)

2005 ESigningFacade.getOrderDetails
failed. Reason: (%61)

2006 ESigningFacade.getOrders failed.
Reason: (%1)

2007 ESigningFacade.getOrderStatus
failed. Reason: (%1)

2008 ESigningFacade.getSDO failed.
Reason: (%1)

2009 ESigningFacade.getSDODetails
failed. Reason: (%61)

2010 ESigningFacade.getSigningProcess
es failed. Reason: (%1)

2011 ESigningFacade.mergeSDOs failed.
Reason: (%1)

2012 ESigningFacade.modifyOrderDeadli
ne failed. Reason: (%1)

2013 ESigningFacade.modifySigningProc
ess failed. Reason: (%1)

2014 ESigningFacade.validateSDO
failed. Reason: (%1)

2015 ESigningFacade.getPAdES failed.
Reason: (%1)

2016 ESigningFacade.generatePAdES

15-16

nets.:

failed. Reason: (%1)

2017 ESigningFacade.deleteDocumentda
ta failed. Reason: (%1)

2018 ESigningFacade.finalizeOrder
failed. Reason: (%1)

2019 ESigningFacade.modifySigner
failed. Reason: (%1)

2020 ES_igningFacade.getSignature
failed. Reason: (%1)

16 - 16

